INTERNATIONAL CENTRE FOR MECHANICAL SCIENCES

COURSES AND LECTURES - No. 9

HEINZ PARKUS
TECHNICAL UNIVERSITY OF VIENNA

RANDOM PROCESSES
 IN MECHANICAL SCIENCES

COURSE HELD AT THE DEPARTMENTS FOR MECHANICS OF DEFORMABLE BODIES AND FOR AUTOMATION AND INFORMATION SEPTEMBER - OCTOBER 1969
|
Copyright by CISM, Udine - 1969
COURSES AND LECTURES - No. 9

HEINZ PARKUS
technical university of vienna

RANDOM PROCESSES

IN MECHANICAL SCIENCES

COURSE HELD AT THE DEPARTMENTS FOR MECHANICS OF DEFORMABLE BODIES AND FOR AUTOMATION AND INFORMATION SEPTEMBER - OCTOBER 1969

UDINE 1969

Additional material to this book can be downloaded from http://extras.springer.com

$$
P r e f a c e
$$

This monograph contains, with a few addi tions and extensions, my lectures given at the Inter national Center for Mechanical Sciences in Udine dur ing the month of October, 1969.

Interest in application of the theory of random processes to mechanics has been growing stead ily during the last decade. Indeed, there can be no doubt that many problems of practical interest call for a probabilistic interpretation. Frequently, forces, temperature or other external agencies acting on a mechanical system cannot be considered to be given in a deterministic sense. A well known example is the motion of an airplane through turbulent air. Further more, the geometry of a structure may be subject to random "imperfections", and material properties may show random deviations from their assumed values.
obviously, it is impossible to present, in a relatively short course of a few weeks duration, all aspects of this highly complex subject. It is my hope, however, that I have succeeded, to some extent at least, in alerting my patient audience to a new field of immense importance, and in paving the way for them to individual further study.

Chapter I presents those parts of probabi Iity theory which, in my opinion, constitute the main tools for application. The chapter can also serve as
a handy reference source. Chapter II treats linear random vibrations and discusses linear differential equations with random driving functions. Chapter III is a very brief account of some nonlinear problems, while in Chapter IV the results of Chapter II and III are applied to the problem of probabilistic failure of structures. Chapter V is devoted to stochastic sta bility and to linear differential equations with para metric excitation. The final Chapter VI presents a brief account of optimization of linear systems with out feedback.

It is my pleasant duty to record here my sincere thanks to the authorities of CISM for their invitation to present these lectures. In particular and above all, I would like to thank my dear friend Professor Luigi Sobrero. Without him CISM would not be in existence.

My thanks are also due to Prof. W.Olszak, Rector of CISM, to whom I owe so much. Dr. H.Bargmann, Dipl. Ing. H.Kastl, Dr. J.L.Zeman and Dr. F.Ziegler have spent much time and effort on proofreading and have made many valuable suggestions.

H. Parkus

Contents

Page
Chapter I : Elements of Probability Theory 1

1. Definitions of Probability 1
2. Random Variables 5
3. Random Processes 22
4. Transformation of a Random Process 30
5. Correlation Theory 34
6. The Poisson Process 52
7. The Wiener Process 57
8. Markov Sequences 62
9. Markov Processes 66
Literature 79
Chapter II : Linear Random Vibrations. 81
10. The Oscillator with One Degree of Freedom under Stochastic Excitation 81
11. System with n Degrees of Freedom 84
12. Continuous Systems 87
Literature 93
Chapter III : Non-1inear Random Vibrations 94
13. Oscillator with Nonlinear Restoring Force 94
14. Perturbation Method 97
15. Equivalent Linearization 101
Literature 104
Chapter IV : Zero Crossings, Peaks and Material Fatigue 105
16. Exceedance of a Given Value 105
17. Extreme Values 108
18. Criteria of Fatigue 114
Literature 119
Chapter V : Stochastic Stability 121
19. Pendulum with Random1y Shaken Suspension Point 121
20. Definition of Stochastic Stability 122
21. Sufficient Conditions for Almost Sure Stability 125
22. Stability of the Mean in the Presence of White Noise 136
23. Stability of Mean Square in the Presence of White Noise 139
24. Linear Stochastic Equations with Non-white Parameters 142
25. Linear Differential Equations with Constant Random Coefficients 151
26. The Problem of First Passage 153
Literature 159
Chapter VI : System Optimization 162
27. The Wiener-Hopf Equation $i 63$
28. Solution of the Wiener-Hopf Equation 165
Literature 169

Table I: Some Discrete Probability Distributions Table II: Some Continuous Probability Distributions

$$
\begin{array}{llllllll}
\mathrm{C} & \mathrm{H} & \mathrm{~A} & \mathrm{P} & \mathrm{~T} & \mathrm{E} & \mathrm{R} & \mathrm{I}
\end{array}
$$

ELEMENTS OF PROBABILITY THEORY .

The abstract measure - theoretical develop ment of probability theory during the last three decades, initiated by Kolmogorov [1] , [2] is, for applí cations to physical problems, neither necessary nor even desirable. Therefore, no use is made of it in the following brief summary of basic definitions and for mulas of probability theory.

1. Definitions of Probability .

(a) The definition by R. von Mises. Let
an experiment with random outcome be given, and let it be performed n times.

If, among these n trials, the event E appears n_{E} times probability $P[E]$ for E to occur is defined as the limit of the relative frequency

$$
\begin{equation*}
P[E]=\lim _{n \rightarrow \infty} \frac{n_{E}}{n} \tag{1.1}
\end{equation*}
$$

This definition of probability turns out to be very well suited, if not essential, for applications since it is based on experiment. It is, there fore, the one mostly used - explicitly and, sometimes, implicitly - by engineers and physicists. Nevertheless, for the axiomatic foundation of probability the def \underline{i}
nition by Kolmogorov as given below appears to be superior. One main objection is, of course, that the limit (1.1) can, in reality, never be determined and that assuming its existence in fact constitutes already a hypothesis.
(b) The Kolmogorov definition is based on three axioms. For their formulation some preliminary concepts are needed.

Let S be the sure (certain) event, apparing at every trial. The set S ("sample space") contains as elements all possible outcomes of the trial. A subset $E \subset S$ is called an event. The empty set \varnothing (which does not contain any outcome at all) is the impossible event. Denote by $\xi_{1}, \xi_{2} \ldots \xi_{n}$ the possible outcomes of the experiment (assumed to be finite for the time being). Then

$$
S=\left\{\xi_{1}, \zeta_{2} \ldots \zeta_{n}\right\}
$$

If at a certain trial the outcome $\boldsymbol{\zeta}_{i}$ appears we say that those events E occurred which contain ζ_{i} as el ament.

The complementary event \bar{E} of E is the set of elements in S which are not in E. Obviously: if E occurs \bar{E} can not occur.

The union $E_{1} \cup E_{2}$ occurs if either E_{1} or E_{2}, or both, occur since $E_{1} \cup E_{2}$ contains all elements that
are in E_{1} or in E_{2} or in both.
The intersection $E_{1} \cap E_{2}$ occurs if both E_{1} and E_{2} occur. If $E_{1} \cap E_{2}=\varnothing$ the two events are mutual lye exclusive.

We now define the probability $P[E]$ of an event E as a real number satisfying the following three axioms
(I) $\quad P[E] \geqslant 0 \quad$ "nonnegativity"
(II) $\mathrm{P}[\mathrm{S}]=1 \quad$ "normalization"
(III) $P\left[\bigcup_{n=1}^{\infty} E_{n}\right]=\sum_{n=1}^{\infty} P\left[E_{n}\right]$ provided the E_{n} are mutually exclusive,i.e. $E_{i} \cap E_{j}=\varnothing$ for $i \neq j$
"additivity"
From these axioms we conclude immediately

$$
\begin{equation*}
P[\bar{E}]=1-P[E], P[\phi]=0 \tag{1.2}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
P\left[E_{1} \cup E_{2}\right]=P\left[E_{1}\right]+P\left[E_{2}\right]-P\left[E_{1} \cap E_{2}\right] \tag{1.3}
\end{equation*}
$$

For a proof we write $E_{1} \cup E_{2}$ and E_{2} as the union of two mutually exclusive events

$$
E_{1} \cup E_{2}=E_{1} \cup\left(\bar{E}_{1} \cap E_{2}\right) \quad, E_{2}=\left(E_{1} \cap E_{2}\right) \cup\left(\bar{E}_{1} \cap E_{2}\right)
$$

and use axiomIII

Fig. 1.1 .

$$
\begin{array}{ll}
\text { Putting } & E_{2}=\bar{E}_{1} \quad \text { in }(1.3) \text { one has } \\
& P\left[E_{1} \cup \bar{E}_{1}\right]=P[S]=1
\end{array}
$$

It must be emphasized, however, that the converse of
$P[S]=1$ and $P[\varnothing]=0$ is not true! Probability 1 does not mean that the event. will certainly occur, and probability 0 does not mean that the event can not occur.

One can easily show that the probability defined by (1.1) satisfies all of the i:hree axioms.

By a fourth axiom we introduce the so--called "conditional probability" $P\left[E \mid E V_{1}\right]$. This is the probability for E occurring if one knows that E_{1} will occur

$$
\begin{equation*}
\text { (iv) } P\left[E \cap E_{1}\right]=P\left[E_{1}\right] P\left[E \mid E_{1}\right], P\left[E_{1}\right] \neq 0 \tag{1.4}
\end{equation*}
$$

$P[E]$ is sometimes called "absolute probability".
We call two events E_{1} and E_{2} (statistically)

independent if

$$
\begin{equation*}
P\left[E_{1} \cap E_{2}\right]=P\left[E_{1}\right] P\left[E_{2}\right] \tag{1.5}
\end{equation*}
$$

provided $P\left[E_{1}\right] \neq 0$ and $P\left[E_{2}\right] \neq 0$. It follows that

$$
P\left[E_{1} \mid E_{2}\right]=P\left[E_{1}\right] \text { and } P\left[E_{2} \mid E_{1}\right]=P\left[E_{2}\right]
$$

If two events are independent so are their complement tare events.

2. Random Variables .

To each outcome $\boldsymbol{\xi}$ of the experiment we adjoin a real number $\boldsymbol{x}(\boldsymbol{\zeta})$ such that
(a) the set $\{x \leqslant X\}$ represents an event E for each real number X, and
(b) the probability of the events $\{x= \pm \infty\}$ is zero:

$$
\begin{equation*}
P[x= \pm \infty]=0 \tag{2.1}
\end{equation*}
$$

$x(\zeta)$ is called random variable.
It follows from property (a) that the set

$$
\begin{gathered}
\left\{X_{1}<x \leq X_{2}\right\} \text { also represents an event. Indeed } \\
\left\{x \leq X_{1}\right\} \cup\left\{X_{1}<x \leq X_{2}\right\}=\left\{x \leq X_{2}\right\}
\end{gathered}
$$

The distribution function $\quad F_{x}(X) \equiv F(X)$

 of the random variable \boldsymbol{x} is defined by$$
\begin{equation*}
F(X)=P[x \leqslant X] \tag{2.2}
\end{equation*}
$$

Similarly, for a multidimensional random variable $\boldsymbol{x}=\left(x_{1}, x_{2} \ldots x_{n}\right)$

$$
\begin{equation*}
F\left(X_{1}, X_{2} \ldots X_{n}\right)=P\left[x_{1} \leqslant X_{1}, x_{2} \leqslant X_{2}, \ldots x_{n} \leqslant X_{n}\right] \tag{2.3}
\end{equation*}
$$

A random variable is called discrete if the probability

$$
\begin{equation*}
P\left[x=X_{i}\right]=p\left(X_{i}\right) \equiv p_{i} \tag{2.4}
\end{equation*}
$$

is different from zero only on a countable set of val ues X_{i} (the spectrum of \boldsymbol{x}), and

$$
\begin{equation*}
\sum_{x_{i}} p\left(X_{i}\right)=1 \tag{2.5}
\end{equation*}
$$

The corresponding distribution function is then given by

$$
\begin{equation*}
F(X)=P[x \leqslant X]=\sum_{x_{i} \leqslant x} p\left(X_{i}\right) \tag{2.6}
\end{equation*}
$$

A random variable is called continuous
if its distribution function is continuous and possesses a piecewise continuous derivative $p(X)$

$$
\begin{align*}
& \frac{d F}{d X}=p(X), \\
& P[x \leqslant X]=F(X)=\int_{-\infty}^{x} p(x) d x \\
& P[a<x \leqslant b]=\int_{a}^{b} p(x) d x \tag{2.7}\\
& \int_{-\infty}^{+\infty} p(x) d x=F(\infty)=1
\end{align*}
$$

$P(X) i s$ called probability density.
The moments of \boldsymbol{x} are defined by

$$
\begin{equation*}
m_{n}\{x\}=\sum_{i} x_{i}^{n} p_{i} \quad \text { resp. } \quad m_{n}\{x\}=\int_{-\infty}^{+\infty} x^{n} p(x) d x \tag{2.8}
\end{equation*}
$$

The first moment is called expectation (statistical mean), the second moment represents the variance. A short summary follows.

The Most Important Functional of a Random Variable

Expectation

Discrete

$$
\begin{aligned}
& m=E\{x\} \equiv\langle x\rangle=\sum_{i} x_{i} p_{i} \\
& E\{f(x)\} \equiv\langle f(x)\rangle=\sum_{i} f\left(x_{i}\right) p_{i}
\end{aligned}
$$

Continuous

$$
\begin{aligned}
& E\{x\} \equiv\langle x\rangle=\int_{-\infty}^{+\infty} x p(x) d x=m \\
& E\{f(x)\} \equiv\langle f(x)\rangle=\int_{-\infty}^{+\infty} f(x) p(x) d x
\end{aligned}
$$

E is a 1 inear operator: $E\{x+y\}=E\{x\}+E\{y\} ; E\{c x\}=c E\{x\}$
Variance σ^{2}
Root mean square $\sigma\} \operatorname{Var}\{x\}=\sigma^{2}=E\left\{(x-m)^{2}\right\}=E\left\{x^{2}\right\}-m^{2}$

Discrete

Continuous
$\sigma^{2}=\sum_{i}\left(x_{i}-m\right)^{2} p_{i}$

$$
\sigma^{2}=\int_{-\infty}^{+\infty}(x-m)^{2} p(x) d x
$$

It follows

$$
E\left\{(x-X)^{2}\right\}=\sigma^{2}+(m-X)^{2}
$$

Tschebyschev Inequality

$$
\begin{equation*}
P[|x-m| \geqslant a] \leqslant \frac{\sigma^{2}}{a^{2}} \quad(a>0) \tag{2.10}
\end{equation*}
$$

Proof:

$$
\begin{aligned}
\sigma^{2}=\int_{-\infty}^{+\infty}(x-m)^{2} p(x) d x & \geqslant \int_{|x-m|>a}(x-m)^{2} p(x) d x \geqslant a^{2} \int_{|x-m|>a} p(x) d x= \\
& =a^{2} P[|x-m| \geqslant a]
\end{aligned}
$$

Bienaymé Inequality

$$
\begin{equation*}
P[|x-a| \geqslant \varepsilon] \leqslant \frac{E\left\{|x-a|^{n}\right\}}{\varepsilon^{n}} \tag{2.11}
\end{equation*}
$$

For a proof see $[4]$, p. 151 .

Several Random Variables. Two Variables u and v.

$$
\text { Joint probability } \quad F(x, y)
$$

(a) Continuous

$$
\begin{aligned}
& F(x, y)=P[u \leqslant x, v \leqslant y]=\int_{-\infty}^{x} \int_{-\infty}^{y} p(\xi, \eta) d \xi d \eta \\
& P(x, y)=\frac{\partial^{2} F(x, y)}{\partial x \partial y}
\end{aligned}
$$

We have

$$
P[u \leqslant x]=\int_{-\infty}^{x} p(\xi) d \xi=\int_{-\infty}^{x} d \xi \int_{-\infty}^{+\infty} p(\xi, \eta) d \eta
$$

Moments:

$$
\begin{equation*}
m_{j k}=E\left\{u^{j} v^{k}\right\}=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^{j} y^{k} p(x, y) d x d y \tag{2.12}
\end{equation*}
$$

In particular

$$
\begin{equation*}
m_{2,0}=E\left\{u^{2}\right\}=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^{2} p(x, y) d x d y \tag{2.13}
\end{equation*}
$$

$$
m_{1,1}=E\{u v\}=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x y p(x, y) d x d y \quad \begin{aligned}
& \text { frosscorrelation } \\
& \text { function }
\end{aligned}
$$

$$
\begin{align*}
& m_{0,2}=E\left\{v^{2}\right\}=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y^{2} p(x, y) d x d y \tag{2.15}\\
& E\{f(u, v)\}=\int_{-\infty}^{+\infty} d x \int_{-\infty}^{+\infty} f(x, y) p(x, y) d y \tag{2.16}
\end{align*}
$$

(b) Discrete

$$
\begin{equation*}
\underline{P\left[u=x_{i}, v=y_{j}\right]=p_{i j}}, \quad \sum_{i} \sum_{j} p_{i j}=1 \tag{2.17}
\end{equation*}
$$

$$
\begin{equation*}
P\left[u=x_{i}\right]=\sum_{j} P\left[u=x_{i}, v=y_{j}\right]=\sum_{j} p_{i j}=p_{i} \tag{2.18}
\end{equation*}
$$

$$
\begin{equation*}
\text { A1so } P\left[v=y_{j}\right]=\sum_{i} p_{i j}=q_{j} \tag{2.19}
\end{equation*}
$$

Conditional Probability

$$
\begin{equation*}
P\left[v=y_{j} \mid u=x_{i}\right]=\frac{P\left[u=x_{i}, v=y_{j}\right]}{P\left[u=x_{i}\right]}=\frac{p_{i j}}{p_{i}} \tag{2.20}
\end{equation*}
$$

Moments

$$
\begin{equation*}
m_{k ?}=E\left\{u^{k} v^{l}\right\}=\sum_{i} \sum_{j} x_{i}^{k} y_{j}^{l} p_{i j} \tag{2.21}
\end{equation*}
$$

In particular

$$
\begin{align*}
& m_{2,0}=E\left\{u^{2}\right\}=\sum_{i} \sum_{j} x_{i}^{2} p_{i j}, \quad m_{0,2}=E\left\{v^{2}\right\}=\sum_{i} \sum_{j} y_{j}^{2} p_{i j} \\
& m_{1,1}=E\{u v\}=\sum_{i} \sum_{j} x_{i} y_{j} p_{i j} \tag{2.22}
\end{align*}
$$

Similarly for n random variables with

$$
P\left[u_{1}=x_{1}^{(i)}, u_{2}=x_{2}^{(j)} \ldots u_{n}=x_{n}^{(s)}\right]=p_{i, j} \ldots s
$$

Characteristic Function

$$
\varphi(q)=E\left\{e^{i q x}\right\}
$$

$$
\begin{equation*}
\varphi(q)=\sum_{j} e^{i q x_{j}} p\left(x_{j}\right) \quad \varphi(q)=\int_{-\infty}^{+\infty} e^{i q x} p(x) d x \tag{2.23}
\end{equation*}
$$

where q is a real number, $-\infty<q<+\infty$.
The probability distribution is uniquely defined by the characteristic function:
$p\left(X_{i}\right)=\lim _{Q \rightarrow \infty} \frac{1}{2 Q} \int_{-Q}^{+Q} e^{-i q X_{i}} \varphi(q) d q, \quad p(X)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-i q x} \varphi(q) d q$ (2.24)
Therefore, in the continuous case, $p(x)$ is the Fourier transform of $\varphi(q)$.

For a multidimensional random variable,

Eq (2.3), we have

$$
\begin{align*}
& \varphi\left(q_{1}, q_{2} \ldots q_{n}\right)=E\left\{\exp i\left(q_{1} x_{1}+q_{2} x_{2}+\ldots+q_{n} x_{n}\right)\right\}= \\
= & \sum_{r} e^{i q_{1} x_{1}^{(r)}} \sum_{r} e^{i q_{2} x_{2}^{(r)}} \ldots \sum_{r} e^{i q_{n} x_{n}^{(r)}} p\left(x_{1}^{(r)}, x_{2}^{(r)} \ldots x_{n}^{(r)}\right) \tag{2.25}\\
= & \int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty} \exp \left[i\left(q_{1} x_{1}+\ldots q_{n} x_{n}\right)\right] p\left(x_{1}, \ldots x_{n}\right) d x_{1} \ldots d x_{n}
\end{align*}
$$

where $\left\{x_{i}^{(1)}, x_{i}^{(2)} \ldots\right\}$ represents the spectrum of the discrete random variable $\quad \boldsymbol{x}_{i}$.
Jointly distributed (multidimensional) random variables $\quad x_{1}, x_{2} \ldots x_{n}$ are called independent, cf. Eq. (1.5) , if

$$
\begin{align*}
P\left[x_{1} \leqslant X_{1}, x_{2}\right. & \left.\leqslant X_{2} \ldots x_{n} \leqslant X_{n}\right]=P\left[x_{1} \leqslant X_{1}\right] P\left[x_{2} \leqslant X_{2}\right] \ldots P\left[x_{n} \leqslant X_{n}\right]= \\
& =F\left(X_{1}\right) F\left(X_{2}\right) \ldots F\left(X_{n}\right) \tag{2.26}
\end{align*}
$$

and, hence, also

$$
\begin{equation*}
p\left(X_{1}, \ldots x_{n}\right)=p\left(x_{1}\right) p\left(X_{2}\right) \cdots p\left(X_{n}\right) \tag{2.27}
\end{equation*}
$$

For the characteristic function one has

$$
\begin{equation*}
\varphi\left(q_{1}, q_{2} \ldots q_{n}\right)=\varphi\left(q_{1}\right) \varphi\left(q_{2}\right) \ldots \varphi\left(q_{n}\right) \tag{2.28}
\end{equation*}
$$

and for the expectations, with arbitrary functions $f_{1}\left(x_{1}\right) \ldots f_{n}\left(x_{n}\right)$,

$$
\begin{equation*}
E\left\{f_{1}\left(x_{1}\right) \ldots f_{n}\left(x_{n}\right)\right\}=E\left\{f_{1}\left(x_{1}\right)\right\} \ldots E\left\{f_{n}\left(x_{n}\right)\right\} \tag{2.29}
\end{equation*}
$$

Two jointly distributed random variables x_{1} and x_{2} are called uncorrelated if their covariance $\operatorname{Cov}\left\{x_{1}, x_{2}\right\}$ vanishes, where

$$
\begin{align*}
\operatorname{Cov}\left\{x_{1}, x_{2}\right\} & \equiv \lambda_{12}=E\left\{\left(x_{1}-m_{1}\right)\left(x_{2}-m_{2}\right)\right\}= \tag{2.30}\\
& =E\left\{x_{1} \cdot x_{2}\right\}-m_{1} m_{2}
\end{align*}
$$

Frequently, the correlation coefficient $@_{12}$ is used

$$
e_{12}=\frac{\lambda_{12}}{\sigma_{1} \sigma_{2}}=E\left\{\begin{array}{ll}
\frac{x_{1}-m_{1}}{\sigma_{1}} & \frac{x_{2}-m_{2}}{\sigma_{2}} \tag{2.31}
\end{array}\right\}
$$

which is then zero for uncorrelated variables.
Two independent variables are also encorelated. The converse is not necessarily true.

$$
\text { If, for two variables } x \text { and } y \text {, }
$$

$$
\begin{equation*}
E\{x y\}=0 \tag{2.32}
\end{equation*}
$$

they are called orthogonal.

The probability distribution of the sum $z=x+y$ of two independent random variables x and y, with densities $f(X)$ and $g(Y)$, is given by the convo lution integral

$$
\begin{equation*}
p(Z)=\int_{-\infty}^{+\infty} f(x) g(Z-x) d x=\int_{-\infty}^{+\infty} f(Z-x) g(x) d x \tag{2.33}
\end{equation*}
$$

Proof: The characteristic function of Z is, with (2.29),

$$
\varphi_{z}(q)=E\left\{e^{i q(x+y)}\right\}=\varphi_{x}(q) \varphi_{y}(q)
$$

Hence, from (2.24) and (2.23)

$$
p(Z)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-i q z} \varphi_{x}(q) \varphi_{y}(q) d q=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-i q z} \varphi_{y}(q) \int_{-\infty}^{+\infty} e^{i q x} f(x) d x d q=
$$

$$
=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} f(x) \int_{-\infty}^{+\infty} e^{-i q(Z-x)} \varphi_{y}(q) d q d x=\int_{-\infty}^{+\infty} f(x) g(Z-x) d x
$$

Additional Remarks

(a) If x and y are normally distributed, $N\left(m, \sigma^{2}\right)$ and $N\left(n, \tau^{2}\right)$, then Z is normal with mean $m+n$ and variance $\sigma^{2}+\tau^{2}$.
(b) If x and y have binomial distri-
butions with parameters n, p and m, p, respectively, then z is binomial with parameters $n+m, p$.
(c) If x and y are Poisson distributed with mean values λ_{x} and λ_{y}, respectively, then z is Poisson distributed with mean $\lambda_{x}+\lambda_{y}$.
(d) If x and y are negative binomial
distributed with parameters k_{x}, p and $k_{y}, p, r e s p e c$ tively, then Z is negative binomial with parameters $k_{x}+k_{y}, p$.
(e) If x and y are gamma distributed with parameters n, λ and m, λ, respectively, then Z is gamma distributed with parameters $n+m, \lambda$.

Central Limit Theorem. Let $x_{1}, x_{2} \ldots x_{n}$ be independent random variables with arbitrary probability distributions, mean values m_{i} and variances $\boldsymbol{\sigma}_{i}^{2}$. The sum

$$
y=\sum_{i=1}^{n} x_{i}
$$

is then normal distributed with mean

$$
m=\sum_{i=1}^{n} m_{i}
$$

and variance

$$
\sigma^{2}=\sum_{i=1}^{n} \sigma_{i}^{2}
$$

for $n \longrightarrow \infty$ provided two positive numbers a and b exist such that

$$
E\left\{\left|x_{i}\right|^{2+a}\right\}<b \sigma_{i}^{2} \quad \text { for all } i=1,2 \ldots
$$

Multidimensional Distributions

Two-dimensional Normal Distribution

$$
\begin{equation*}
p(x, y)=\frac{1}{2 \pi \sigma \tau \sqrt{1-Q^{2}}} \exp \left\{\frac{-1}{2\left(1-\varrho^{2}\right)}\left[\left(\frac{x-m}{\sigma}\right)^{2}-2 \rho \frac{x-m}{\sigma} \frac{y-n}{\tau}+\left(\frac{y-n}{\tau}\right)^{2}\right]\right\} \tag{2.34}
\end{equation*}
$$

where

$$
m=E\{x\}, \quad n=E\{y\}, \sigma^{2}=E\left\{x^{2}\right\}-m^{2}, \tau^{2}=E\left\{y^{2}\right\}-n^{2}, \rho \sigma \tau=E\{x y\}-m n
$$

For x, y independent one has $p(x, y)=p(x) p(y)$ and, hence, $\varrho=0$.

N-dimensional Normal Distribution.
$p\left(x_{1} \ldots x_{n}\right)=\frac{1}{\sqrt{(2 \pi)^{n}\left|\lambda_{i k}\right|}} \exp \left[-\frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{n} \mu_{i k}\left(x_{i}-m_{i}\right)\left(x_{k}-m_{k}\right)\right]$
where
$\lambda_{i k}=\lambda_{k i}=E\left\{\left(x_{i}-m_{i}\right)\left(x_{k}-m_{k}\right)\right\}= \begin{cases}\sigma_{i}^{2} & \text { for } i=k \\ E\left\{x_{i} x_{k}\right\}-m_{i} m_{k}=e_{i k} \sigma_{i} \sigma_{k} & \text { for } i \neq k\end{cases}$
form the $n \times n$ matrix of the central moments, $\left|\lambda_{i k}\right|$
is the corresponding determinant, and $\mu_{i k}$ are the elements of the inverse matrix.

N-dimensional Poisson Distribution.

$$
p\left(x_{1}, x_{2} \ldots x_{n}\right)=e^{-\left(\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}\right)} \frac{\lambda_{1}^{x_{1}} \lambda_{2}^{x_{2}} \ldots \lambda_{n}^{x_{n}}}{x_{1}!x_{2}!\ldots x_{n}!}
$$

Conditional Expectation, Conditional Variance

 and Conditional Distribution of a Normal Random Variable.Let x and y be two normal random variables with zero expectations and let $z=y-\boldsymbol{x} \boldsymbol{x}$ be orthogonal to x :

$$
E\{(y-\alpha x) x\}=0
$$

whence

$$
\begin{equation*}
\alpha=\frac{E\{x y\}}{E\left\{x^{2}\right\}} \tag{2.37}
\end{equation*}
$$

Since z too is normal with zero mean, \boldsymbol{x} and \boldsymbol{z} are not only orthogonal but also uncorrelated and, in addition, independent, cf. (2.34). Hence

$$
E\{y-\alpha x \mid x\}=E\{y-\alpha x\}=0
$$

But*)

$$
E\{y-\alpha x \mid x\}=E\{y \mid x\}-\alpha E\{x \mid x\}=E\{y \mid x\}-\alpha x
$$

Therefore

$$
\begin{equation*}
E\{y \mid x\}=\alpha x \tag{2.38}
\end{equation*}
$$

with \propto from (2.37).
For the determination of the conditional variance one has first

$$
\operatorname{Var}\{y \mid x\}=\operatorname{Var}\{z \mid x\}=E\left\{(y-\alpha x)^{2} \mid x\right\}=E\left\{(y-\alpha x)^{2}\right\}
$$

since $y-\alpha \boldsymbol{x}$ is independent of \boldsymbol{x}. Expansion, taking (2.37) into account, renders

$$
\begin{equation*}
\operatorname{Var}\{y \mid x\}=\sigma_{y \mid x}^{2}=E\left\{y^{2}\right\}-\frac{E^{2}\{x y\}}{E\left\{x^{2}\right\}} \tag{2.39}
\end{equation*}
$$

*) The conditional probability of a random variable is, by extending axiom (1.4), defined as

$$
F(X \mid E)=P[x \leqslant X \mid E]=\frac{P[(x \leqslant X) \cap E]}{P[E]}
$$

provided

$$
P[E] \neq 0
$$

or, using the notation of (2.34)

$$
\begin{equation*}
\sigma_{y \mid x}^{2}=\left(1-e^{2}\right) \tau^{2}, \quad \alpha=e \frac{\tau}{\sigma} \tag{2.40}
\end{equation*}
$$

The conditional probability density is, therefore,

$$
\begin{equation*}
p(y \mid x)=\frac{1}{\tau \sqrt{2 \pi\left(1-\varrho^{2}\right)}} \exp \left[-\frac{(y-\alpha x)^{2}}{2\left(1-\varrho^{2}\right) \tau^{2}}\right] \tag{2.41}
\end{equation*}
$$

Functions of One Random Variable.
In order to determine the probability distribution $P[y \leqslant Y]$ of a function $y=f(x)$ of the random variable x from $P[x \leqslant X]$, equation $y=f(x)$ has to be solved for \boldsymbol{x}.
Example $\quad y=\frac{1}{x^{2}}>0$
From

$$
x_{1}=-\frac{1}{\sqrt{y}}, \quad x_{2}=+\frac{1}{\sqrt{y}}
$$

one has at once

$$
P[y \leqslant Y]=P\left[x \leqslant-\frac{1}{\sqrt{Y}}\right]+P\left[x \geqslant \frac{1}{\sqrt{Y}}\right]=F_{x}\left(-\frac{1}{\sqrt{Y}}\right)+1-F_{x}\left(\frac{1}{\sqrt{Y}}\right)
$$

for $Y \geqslant 0$ and $P[y \leqslant Y]=0$ for $Y<0$

[^0]bility density $q(y)$. Let $x_{1}, x_{2} \ldots x_{n} \ldots$ be all real roots of the equation $f(x)=y$. Then
\[

$$
\begin{equation*}
q(y)=\sum_{i=1}^{\infty} \frac{p\left(x_{i}\right)}{\left|f^{\prime}\left(x_{i}\right)\right|} \tag{2.42}
\end{equation*}
$$

\]

Proof:

$$
\begin{aligned}
& q(y) d y=P\left[y<Y<y_{0}+d y\right]= \\
& =\ldots P\left[x_{i}<X<x_{i}+\left|d x_{i}\right|\right]+ \\
& \quad+P\left[x_{i+1}<X<x_{i+1}+\left|d x_{i+1}\right|\right]+\ldots= \\
& =p\left(x_{i}\right)\left|d x_{i}\right|+P\left(x_{i+1}\right)\left|d x_{i+1}\right|+\ldots
\end{aligned}
$$

Fig. 1.2
With $f^{\prime}\left(x_{i}\right) d x_{i}=d y$ Eq. (2.42) follows.

Functions of Several Random Variables.

Let

$$
\begin{equation*}
y_{1}=f_{1}\left(x_{1}, \ldots x_{n}\right), \ldots y_{k}=f_{k}\left(x_{1}, \ldots x_{n}\right) \tag{2.43}
\end{equation*}
$$

We look for the distribution $\quad q\left(y_{1}, \ldots y_{k}\right)$.

$$
\text { If } k<n \text { the number } k \text { of the } y_{i} \text { is first }
$$ supplemented to n by introducing the auxiliary variables

$$
y_{k+1}=x_{k+1}, \ldots y_{n}=x_{n}
$$

Then we solve the system

$$
\begin{gathered}
f_{1}\left(x_{1}, \ldots x_{n}\right)=y_{1} \\
\cdot \cdot \cdots \cdot \\
f_{n}\left(x_{1}, \ldots x_{n}\right)=y_{n}
\end{gathered}
$$

for the x_{i}. If it has one real solution $x_{1} \ldots x_{n}$, then

$$
\begin{equation*}
q\left(y_{1}, \ldots y_{n}\right)=\frac{p\left(x_{1} \ldots x_{n}\right)}{\left|J\left(x_{1} \ldots x_{n}\right)\right|} \tag{2.44}
\end{equation*}
$$

where J represents the Jacobian of the system (2.43)

$$
J\left(x_{1} \ldots x_{n}\right)=\left|\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \tag{2.45}\\
\cdots & \cdots & \cdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right|
$$

If the system has more than one real solution the right hand side of (2.44) has to be replaced by

$$
\Sigma \frac{p\left(x_{i 1} \ldots x_{i n}\right)}{\left|J\left(x_{i 1}, \ldots x_{i n}\right)\right|}
$$

If the system has no real solution then

$$
q\left(y_{1}, \ldots y_{n}\right)=0
$$

3. Random Processes .

Again, let an experiment be given characterized by the results (outcomes, elementary events) ζ forming the space $5\left\{\zeta_{1}, \zeta_{2} \ldots \zeta_{n}\right\}$. Probabilities $P[E]$ are assigned to certain subsets E of S. However, to each outcome of a trial we now adjoin not a real number x but a (real or complex) time function

$$
x(t, \zeta)
$$

This family of functions forms a stochastic process. In the following we shall use the notation $x(t)$ omitt ing the dependence on ζ. Of course, x can be a multidimensional variable.

From the above we see that $x(t)$ may have four different meanings:
(1) A family of time functions (\boldsymbol{t} and $\boldsymbol{\xi}$ variable)
(2) A single time function (t variable, $\xi=\xi_{i}$ fixed)
(3) A random variable ($t=t_{n}$ fixed, ξ variable)
(4) A single number (t and ξ fixed)

Random functions of a stochastic process may mean quite different things. A realization of the one-dimensional Brownian motion, for instance, will perhaps look as in Fig. 1.3. It is continuous but nowhere differentiable.

Above all, however: if $\boldsymbol{x}\left(\mathrm{t}, \boldsymbol{\zeta}_{i}\right)$ is known for $t<T$ its further course can not be predicted.

On the other hand, if one considers the random process

$$
x(t, \zeta)=\alpha(\zeta) \cos [\omega(\zeta) t+\varepsilon(\zeta)]
$$

then each realization $\boldsymbol{x}\left(\mathrm{t}, \boldsymbol{\zeta}=\boldsymbol{\zeta}_{i}\right)$ represents an entirely regular curve, which is known for $t>T$ once it is known for $t \leqslant T$.

Probability distribution $F(X ; t)=P[x(t) \leqslant X]$ and density $P(X ; t)=\partial F / \partial X$ are now, in general, functions of time t. However, they are no longer sufficient to describe the process. In the sense of probability theory a random process is to be consider ed as being determined if its n-dimensional ($n=1,2,3 \ldots$) probability distributions or probabilitv densities are given (each higher distribution contains all preceding ones and describes the process with increasing accuracy):
One-dim.: $P_{1}[x(t) \leqslant \xi]=\int_{-\infty}^{\xi} p_{1}(x ; t) d x, \quad P_{1}=1 \quad$ for $\xi=\infty$

Two-dim. : $P_{2}[x(t) \leqslant \xi, x(s) \leqslant \eta]=\int_{-\infty}^{\xi} \int_{-\infty}^{\eta} P_{2}(x, y ; t, s) d x d y$
n-dim.:
$P_{n}\left[x\left(t_{1}\right) \leqslant \xi_{1}, x\left(t_{2}\right) \leqslant \xi_{2} \ldots x\left(t_{n}\right) \leqslant \xi_{n}\right]=" j o i n t$ probability"

$$
=\int_{-\infty}^{\xi_{1}} \int_{-\infty}^{\xi_{2}} \cdots \int_{-\infty}^{\xi_{n}} p_{n}\left(x_{1}, \ldots x_{n} ; t_{1}, \ldots t_{n}\right) d x_{1} \ldots d x_{n}
$$

We have

$$
P_{n-1}\left(\xi_{1}, \xi_{2}, \ldots \xi_{n-1} ; t_{1}, t_{2} \ldots t_{n-1}\right)=\lim _{\xi_{n} \rightarrow \infty} P_{n}
$$

Connected with the probability law for the n random variables $x\left(t_{1}\right) \ldots x\left(t_{n}\right)$ is the joint characteristic function

$$
\begin{aligned}
& \varphi\left(q_{1}, q_{2} \ldots q_{n} ; t_{1}, t_{2} \ldots t_{n}\right)=E\left\{\exp \left[i\left(q_{1} x\left(t_{1}\right)+\ldots+q_{n} x\left(t_{n}\right)\right)\right]\right\}= \\
& =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \exp \left[i\left(q_{1} x_{1}+\ldots g_{n} x_{n}\right)\right] p_{n}\left(x_{1}, \ldots x_{n} ; t_{1}, \ldots t_{n}\right) d x_{1} \ldots d x_{n}
\end{aligned}
$$

Mean value $E\{x(t)\}=m(t)=\left\langle x(t)>=\int_{-\infty}^{+\infty} x p(x ; t) d x\right.$ (3.3)

Correlation Function (Autocorrelation)

$$
E\{x(t) \cdot x(s)\}=R(t, s)=<x(t) \cdot x(s)>=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x y p(x, y ; t, s) d x d y
$$

and similarly for the higher moments. For the variance we have

$$
\begin{equation*}
\sigma^{2}(t)=R(t, t)-m^{2}(t) \tag{3.5}
\end{equation*}
$$

Discrete Distribution

$$
\begin{align*}
& P_{1}\left[x(t)=X_{i}\right]=P_{i}(t) \tag{3.6}\\
& P_{2}\left[x(t)=X_{i}, x(s)=Y_{j}\right]=p_{i j}(t, s) \\
& P_{1}[x(t) \leqslant \xi]=\sum_{x_{i} \leqslant \xi} p_{i}(t) \tag{3.7}\\
& P_{2}[x(t) \leqslant \xi, x(s) \leqslant \eta]=\sum_{x_{i} \leqslant \xi} \sum_{Y_{j} \leqslant \eta} P_{i j}(t, s) \\
& \text { - - - - - - - - - - - - - - - } \\
& P_{n}\left[x\left(t_{1}\right) \leqslant \xi_{1} \ldots x\left(t_{n}\right) \leqslant \xi_{n}\right]=\sum_{x_{i} \leqslant \xi_{1}} \ldots \sum_{z_{j} \leqslant \xi_{n}} p_{i j \ldots n}\left(t_{1}, t_{2} \ldots t_{n}\right)
\end{align*}
$$

Expectation $\quad E\{x(t)\}=\sum_{i} x_{i} p_{i}(t)$

Autocorrelation

$$
\begin{equation*}
R(t, s)=E\{x(t) x(s)\}=\sum_{i} \sum_{j} x_{i} y_{j} p_{i j}(t, s) \tag{3.9}
\end{equation*}
$$

In the case of a normal distribution
the random process is completely determined if $m(t)$ and $R(t, s)$ are known since then all $p\left(\boldsymbol{\xi}_{1} \ldots \boldsymbol{\xi}_{n} ; t_{1} \ldots t_{n}\right)$ are determined, cf. (2.35).

Stochastic Continuity, Differentiation and Integration.

In order to apply the rules of analysis to random functions*)the concepts of continuity and limit have to be redefined. This can be done in various ways. Some definitions are given below.
*) The difficulty arises because a stochastic process represents a family of functions. Some members of the family may behave quite reasonably while others may be pathological. Our definition shall, however, be valid for the entire family!
(a) Ordinary (deterministic) continuity

$$
\lim _{h \rightarrow 0}[x(t+h)-x(t)]=0
$$

for each realization ("sample") of the process.
(b) A1most sure continuity

$$
\lim _{h \rightarrow 0}[x(t+h)-x(t)]=0
$$

with probability $P=1$.
(c) Continuity in mean square

$$
\lim _{h \rightarrow 0} E\left\{|x(t+h)-x(t)|^{2}\right\}=0
$$

Definitions (a) and (b) refer to sample properties and, hence, are more desirable in applications than (c). However, definition (a) is too restrictive and is not being used in probability theory. (c) is the most commonly used form. (b) and (c) do not imply each other.

In the same manner derivative and Riemann integral of a random function may be defined. For instance, for the mean square derivative we have

Theorem. For the existence of $\dot{x}(t)$ in the above sense the existence of

$$
\frac{\partial R}{\partial t}, \frac{\partial R}{\partial s}, \frac{\partial^{2} R}{\partial t \partial s}
$$

at $t=s$ is necessary and sufficient. $R(t, s)$ is the correlation function of the process. We give a proof for the stationary case. It suffices to show the existence of

$$
E\left\{\left[\frac{x(t+h)-x(t)}{h}\right]^{2}\right\}=\frac{1}{h^{2}}[R(0)-2 R(h)+R(0)]=2 \frac{R(0)-R(h)}{h^{2}}
$$

for $h \rightarrow 0$. For this, in turn, the existence of

$$
\lim _{h \rightarrow 0} \frac{R(h)-R(0)}{h}=R^{\prime}(0)=0
$$

and

$$
\lim _{h \rightarrow 0} 2 \frac{R(h)-R(0)}{h^{2}}=R^{\prime \prime}(0)
$$

is necessary and sufficient. But, as a consequence of the symmetry of $R(t)$ the first condition is satisfied if $R^{\prime}(0)$ exists. This completes the proof which, for a nonstationary process may be given in an analogous manner.

For a differentiable process

$$
\begin{equation*}
E\{\dot{x}(t)\}=\frac{d}{d t} E\{x(t)\} \tag{3.10}
\end{equation*}
$$

"Expectation and differentiation commute".
Similarly, if the Riemann double integral
$\int_{a}^{b} \int_{a}^{b} R(t, s) d t d S$ exists in the square (a, b), then $\int_{a}^{b} x(t) d t$ exists in mean square, and

$$
\begin{equation*}
E\left\{\int_{a}^{b} x(t) d t\right\}=\int_{a}^{b} E\{x(t)\} d t \tag{3.11}
\end{equation*}
$$

"Expectation and differentiation commute".

Stationary Random Processes.

If m is independent of t, and if $R(t, s)$ depends on the difference $t-s$ only the random process is called (weakly) stationary. σ^{2} is then a constant. We have

$$
\begin{equation*}
R(t-s)=E\{x(t) x(s)\}=R(s-t)=R(\tau), \tau=|s-t| \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{2}=R(0)-m^{2} \tag{3.13}
\end{equation*}
$$

Note. If t denotes a space variable rather than time the process is called homogeneous.

Note. The process is called stationary in the strict sense if its entire statistics remains unchanged under a time-shift

$$
\begin{equation*}
p_{n}\left(x_{1}, \ldots x_{n} ; t_{1}, \ldots t_{n}\right)=p_{n}\left(x_{1}, \ldots x_{n} ; t_{1}+\tau, \ldots t_{n}+\tau\right) \tag{3.14}
\end{equation*}
$$

for each n. It follows that

$$
\begin{align*}
& p_{1}(x ; t)=p_{1}(x), \quad E\{x(t)\}=m=\text { const } \\
& p_{2}\left(x_{1}, x_{2} ; t_{1}, t_{2}\right)=p_{2}\left(x_{1}, x_{2} ; \tau\right), \tag{3.15}\\
& E\{x(t+\tau) \cdot x(t)\}=R(\tau)=R(-\tau)
\end{align*}
$$

The same holds true for the cross-correlation of a two-dimensional process $x(t), y(t)$:

$$
\begin{equation*}
R_{x y}(\tau)=E\{x(t+\tau) \cdot y(t)\} \tag{3.16}
\end{equation*}
$$

If (3.14) holds for $n \leqslant k$ only rather than for all n the process is called stationary of order k. A process of order 2 is also weakly stationary; the converse is not true!

4. Transformation of a Random Process .

Let an operator T be defined on the set of random functions $x(t)$, and let T adjoin to each function of this set one and only one function $y(t)$:

Fig. 1.4

$$
y(t)=T[x(t)] \text { (4.1) }
$$

We speak of a transformaLion or mapping. Frequent$1 \mathrm{y}, \boldsymbol{x}(\mathrm{t})$ and $\mathrm{y}(\mathrm{t})$ are called
"input" and "output", respectively, of the system defined by T .
Since, to each outcome ζ_{i} there corresponds one time--function $\boldsymbol{x}\left(\mathrm{t}, \xi_{\mathrm{i}}\right)$ and, hence, one time-function $y\left(t, \zeta_{i}\right)$ the operator is deterministic. If, however, two outcomes ζ_{1} and ζ_{2} exist such that

$$
x\left(t, \zeta_{1}\right)=x\left(t, \xi_{2}\right) \text { but } y\left(t, \zeta_{1}\right) \neq y\left(t, \zeta_{2}\right)
$$

we speak of a random operator. If, for instance, T is a differential operator then it is deterministic or random depending on whether its coefficients are deterministic or random, respectively. For the time being we restrict ourselves to deterministic operators* and consider two special cases.
(a) Time - Invariant Systems. Let the operation $T(x)$ be a function of x but not of \dot{x} or $\int_{0}^{t} x(\tau) d \tau$ etc. Then the output $y\left(t_{1}\right)$ at time t_{1} depends on $x\left(t_{1}\right)$

Random operators will be discussed in Chapter $\overline{\underline{V}}$.
only and is independent of the past or future values of $x(t)$: the system has no memory.

Since now $y=f(x)$ the $p .-d e n s i t y$ of the process $y(t)$ may be determined from (2.42). Similarly, one finds the joint density $\quad q_{n}\left(y_{1}, \ldots y_{n} ; t_{1}, \ldots t_{n}\right)$ from (2.44), with $y_{i} \equiv y\left(t_{i}\right)=f\left[x\left(t_{i}\right)\right]$.

For expectation and autocorrelation we have

$$
\begin{gather*}
E\{y(t)\}=\int_{-\infty}^{+\infty} f(x) p(x ; t) d x \\
R_{y y}\left(t_{1}, t_{2}\right)=E\left\{y\left(t_{1}\right) \cdot y\left(t_{2}\right)\right\}=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f\left(x_{1}\right) f\left(x_{2}\right) p_{2}\left(x_{1}, x_{2} ; t_{1}, t_{2}\right) d x_{1} d x_{2} \tag{4.3}
\end{gather*}
$$

If the input $\boldsymbol{x}(\mathrm{t})$ is stationary in the strict sense or stationary of order n then the output $y(t)$ is stationary in the strict sense or stationary of or der n, respectively. The proof follows from a consideration of $q_{n}\left(y_{1}, \ldots y_{n} ; t_{1}, \ldots t_{n}\right)$ since the Jacobian is independent of t.

If $\boldsymbol{x}(\mathrm{t})$ is only weakly stationary then $y(t)$ is not necessarily stationary in any sense.
(b) Linear system. If the operator $T \equiv L$ has the property that

$$
\begin{equation*}
L\left[\Sigma a_{i} x_{i}(t)\right]=\Sigma a_{i} L\left[x_{i}(t)\right] \tag{4.4}
\end{equation*}
$$

for arbitrary α_{i} and $\boldsymbol{x}_{i}(t)$ then it is called linear.

$$
\text { We find, as a consequence of }(3.10) \text { and }(3.11) \text {, }
$$

that

$$
\begin{equation*}
E\{L[x(t)]\}=L[E\{x(t)\}] \tag{4.5}
\end{equation*}
$$

"Expectation and linear operator commute".
For the autocorrelation we have

$$
\left.\begin{array}{l}
R_{x y}(t, s)=L_{s}\left[R_{x x}(t, s)\right] \tag{4.6}\\
R_{y y}(t, s)=L_{t}\left[R_{x y}(t, s)\right]=L_{t} L_{s}\left[R_{x x}(t, s)\right]
\end{array}\right\}
$$

where L_{t} and L_{s} indicate that s and t, respectively, are parameters only.

An important linear operator is the polynomial $P(D)$, with constant coefficients, in the derivative $D \equiv d / d t$:

$$
\begin{equation*}
P(D)=a_{n} D^{n}+a_{n-1} D^{n-1}+\ldots+a_{0} \tag{4.7}
\end{equation*}
$$

A second, frequently occurring linear transformation is of the form

$$
\begin{equation*}
y(t)=\int_{-\infty}^{t} h(t-\tau) x(\tau) d \tau \tag{4.8}
\end{equation*}
$$

where $h(t, \tau)$ denotes a deterministic function, the so-
-called "impulse response" of the system.
It is important to note that the applica tion of a linear (deterministic) operator to a normal random function again produces a normal function. The reason is in the fact that the sum of (dependent or independent) normal random functions is again normal.

5. Correlation Theory -

A random process may be considered to be completely determined if all its p.-distributions (3.1) are known. However, the determination of these distributions is, in general, a difficult or even impossible task. Frequently one has, therefore, to be satisfied with the knowledge of mean value and correlation function. This highly restricted treatment of random processes is called correlation theory. Some Important Properties of Correlation Functions. For the sake of generality we admit random functions that are complex - valued

$$
x(t)=u(t)+i v(t)
$$

Then, with* denoting the complex-conjugate,

$$
\begin{equation*}
R(t, s)=E\left\{x(t) \cdot x^{*}(s)\right\} \tag{5.1}
\end{equation*}
$$

and we have

For a real random function this becomes symmetry:

$$
R(t, s)=R(s, t)
$$

Consider now the expression $|x(t) \pm x(s)|^{2}$, which is real and nonnegative. Hence, for its expect tion we have

$$
E\left\{|x(t) \pm x(s)|^{2}\right\} \geqslant 0
$$

or, after expanding:
(II) $\quad R(t, t)+R(s, s) \geqslant 2|\operatorname{Re} R(t, s)|$

$$
\begin{equation*}
\text { For a stationary function } R(t, s) \rightarrow R(t-s)=R(\tau) \text {, } \tag{5.3}
\end{equation*}
$$

and (I) and (II) go over into

$$
\begin{align*}
& R(\tau)=R^{*}(-\tau) \tag{a}\\
& R(\tau)=R(-\tau) \quad(r e a l) \tag{5.2a}
\end{align*}
$$

(III)

$$
\begin{align*}
& R(0) \geqslant|\operatorname{Re} R(\tau)| \\
& R(0) \geqslant R(\tau) \quad(\text { real } 1) \tag{5.3a}
\end{align*}
$$

For the cross -correlation of two complex random funLions $x(t)$ and $y(t)$

$$
\begin{equation*}
R_{x y}(t, s)=E\left\{x(t) y^{*}(s)\right\} \tag{5.4}
\end{equation*}
$$

analogous relations hold

$$
\text { (III) } \begin{align*}
R_{x y}(t, s) & =R_{y x}^{*}(s, t) \\
R_{x y}(t, s) & =R_{y x}(s, t) \quad \text { (real) } \tag{5.5}
\end{align*}
$$

$$
\begin{equation*}
\text { (IV) } \quad\left|R_{x y}(t, s)\right| \leqslant \sqrt{R_{x}(t, t) R_{y}(s, s)} \tag{5.6}
\end{equation*}
$$

The last relation follows from

$$
\left|R_{x y}(t, s)\right|=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x y p(x, y ; t, s) d x d y
$$

with the aid of the Schwartz inequality $[8]$, p. 46. In the stationary case, $R_{x y}(t, s) \rightarrow R_{x y}(t-s)=$ $=R_{x y}(\tau)$, equations (5.5) and (5.6) simplify to
(III a) $\quad R_{x y}(\tau)=R_{y x}^{*}(-\tau)$

$$
\begin{equation*}
\left.R_{x y}(\tau)=R_{y x}(-\tau) \quad \text { (real } 1\right) \tag{5.5a}
\end{equation*}
$$

$$
\begin{equation*}
\text { (II a) } \quad\left|R_{x y}(\tau)\right| \leqslant \sqrt{R_{x}(0) R_{y}(0)} \tag{5.6a}
\end{equation*}
$$

For the cross-correlation of a random function $x(t)$ and its derivative $\dot{x}(t)$ one finds immediately

$$
\begin{equation*}
R_{x \dot{x}}(t, s)=\frac{\partial}{\partial s} E\{x(t) x(s)\}=\frac{\partial R_{x x}(t, s)}{\partial s} \tag{5.7}
\end{equation*}
$$

and, in the stationary case,

$$
\begin{equation*}
R_{x \dot{x}}(\tau)=\frac{d R_{x x}(\tau)}{d \tau} \tag{5.7a}
\end{equation*}
$$

If, in addition, $x(t)$ is real, we have

$$
\begin{equation*}
R_{x \dot{x}}(0)=0 \tag{5.8}
\end{equation*}
$$

as a consequence of the symmetry of $R_{x x}$ with respect to $\boldsymbol{r}=0$.

Similarly, for the second derivative

$$
\begin{equation*}
R_{x \ddot{x}}(t, s)=\frac{\partial^{2} R_{x x}(t, s)}{\partial s^{2}} \quad \text { or } \quad R_{x \ddot{x}}(\tau)=\frac{d^{2} R_{x x}(\tau)}{d \tau^{2}} \tag{5.9}
\end{equation*}
$$

Stationary Processes.

Within the framework of correlation theory there is, of course, no difference between stationary and weakly stationary processes.

Ergodic Theorem

We are concerned here with the problem of finding the statistics of a process $\boldsymbol{x}(\mathrm{t}, \zeta)$ from a single observation $\quad \xi=\zeta_{i}$. If this is possible for the entire statistics the process is called ergodic in the most general form. For such a process time averages are equal to ensemble averages (expectations). Clearly, in correlation theory we are only interested in m and $R(\cdot)$.

Our first question is, therefore: under what circumstances is the time average

$$
\bar{x}=\frac{1}{T} \int_{0}^{T} x(t) d t
$$

in the limit $T \rightarrow \infty$ equal to the expectation $m=<x(t)>$? Obviously, $\overline{\boldsymbol{x}}$ is a random quantity with expectation

$$
E\{\bar{x}(t)\}=\frac{1}{T} \int_{0}^{T} m d t=m
$$

The variance $\overline{\boldsymbol{\sigma}}^{2}$ of \bar{x} is given by

$$
\begin{aligned}
\bar{\sigma}^{2} & =E\left\{(\bar{x}-m)^{2}\right\}=\frac{1}{T^{2}} \int_{0}^{T} d t \int_{0}^{T} E\{[x(t)-m][x(s)-m]\} d s= \\
& =\frac{1}{T^{2}} \int_{0}^{T} d t \int_{0}^{T}\left[R(s-t)-m^{2}\right] d s
\end{aligned}
$$

We introduce now the new variable $s-t=\tau$

$$
d s=d \tau
$$

Tn order to sweep the entire square area τ has to go from $-T$ to $+T$. Thus we have, writing $R(\tau)-m^{2}=A(\tau)$ for brevity,

Fig.1.5

$$
\bar{\sigma}^{2}=\frac{1}{T^{2}}\left[\int_{-T}^{0} A(\tau) \int_{-\tau}^{T} d t d \tau+\int_{0}^{T} A(\tau) \int_{0}^{T-\tau} d t d \tau\right]=
$$

$$
=\frac{1}{T^{2}}\left[\int_{-T}^{0}(T+\tau) A(\tau) d \tau+\int_{0}^{T}(T-\tau) A(\tau) d \tau\right]=
$$

$$
=\frac{2}{T^{2}} \int_{0}^{T}(T-\tau) A(\tau) d \tau=\frac{2}{T} \int_{0}^{T}\left(1-\frac{\tau}{T}\right)\left[R(\tau)-m^{2}\right] d \tau
$$

Now, in order to have the random variable \bar{x} take on its expected value m in the limit as $T \rightarrow \infty$ it is necessary and sufficient that its variance $\overline{\boldsymbol{\sigma}}^{2}$ goes to zero in the limit. Since

$$
\lim _{T \rightarrow \infty} \frac{2}{T} \int_{0}^{T}\left(1-\frac{\tau}{T}\right)\left[R(\tau)-m^{2}\right] d \tau=\lim _{T \rightarrow \infty} \frac{2}{T} \int_{0}^{T}\left[R(\tau)-m^{2}\right] d \tau
$$

we have ergodic theorem I :

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} x(t) d t=m \tag{5.10}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} R(t) d t=m^{2} \tag{5.11}
\end{equation*}
$$

If we now consider the process

$$
u(t)=x(t+\tau) x(t)
$$

whose expectation is $R(\boldsymbol{\tau})$ and whose autocorrelation is given by

$$
\begin{equation*}
R_{u u}(\lambda)=E\{x(t+\tau) x(t) x(t+\tau+\lambda) x(t+\lambda)\} \tag{5.12}
\end{equation*}
$$

we obtain at once ergodic theorem II:

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} x(t+r) x(t) d t=R(\tau) \tag{5.13}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} R_{u u}(\lambda) d \lambda=R^{2}(\tau) \tag{5.14}
\end{equation*}
$$

We observe that a knowledge of m and
$R($.$) suffices to test a process for ergodicity of$ the mean. To test for ergodicity of the autocorrelation one has to know the fourth-order moment $R_{u u}$!

Spectral Density.

The Fourier transform

$$
\begin{equation*}
X(\omega)=\int_{-\infty}^{+\infty} x(t) e^{-i \omega t} d t, x(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(\omega) e^{i \omega t} d \omega \tag{5.15}
\end{equation*}
$$

does, in general, not exist for a stationary stochastic process. On the other hand, the autocorrelation does have a Fourier transform called spectral density $S(\omega)$:

$$
\begin{align*}
& S(\omega)=\int_{-\infty}^{+\infty} R(t) e^{-i \omega t} d t=2 \int_{0}^{\infty} R(t) \cos \omega t d t \tag{5.16}\\
& R(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} S(\omega) e^{i \omega t} d \omega=\frac{1}{\pi} \int_{0}^{\infty} S(\omega) \cos \omega t d \omega
\end{align*}
$$

The two Eqs. (5.16/17) are known as the WienerChintchine equations *) It follows from (5.16) that $S(\boldsymbol{\omega})$ is real and even.

If ergodic theorem II, Eq. (5.13), is assum ed to hold (equality of sample correlation and ensem ble correlation) Eq. (5.16) may be written
*) Watch for different definitions of the Fourier transform in different sources!

$$
\begin{equation*}
S(\omega)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-\infty}^{+\infty} e^{-i \omega \tau} \int_{-T}^{T} x(t+\tau) x(t) d t d \tau \tag{5.18}
\end{equation*}
$$

One also arrives at this expression in the following manner. Replacing the divergent Fourier--transform (5.15) by

$$
\begin{equation*}
X(\omega)=\lim _{T \rightarrow \infty} \frac{1}{\sqrt{2 T}} \int_{-T}^{+T} x(t) e^{-i \omega t} d t \tag{a}
\end{equation*}
$$

one gets

$$
X(\omega) X^{*}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x(\lambda) \int_{-T}^{+T} x(t) e^{-i \omega(\lambda-t)} d t d \lambda
$$

which, putting

$$
\lambda-t=\tau, \quad d \lambda=d \tau
$$

gives at once

$$
\begin{equation*}
S(\omega)=X(\omega) X^{*}(\omega) \geqslant 0 \tag{5.19}
\end{equation*}
$$

Transformation (a) is called "generalized Fourier transform".

Linear Systems
The output of a 1 inear system with con stant coefficients may be represented in the form (4.8)*)
*) Using the $\boldsymbol{\delta}$-function and its derivatives, if necessary.

$$
\begin{equation*}
y(t)=\int_{-\infty}^{t} h(t-\tau) x(\tau) d \tau=\int_{0}^{\infty} h(\tau) x(t-\tau) d \tau \tag{5.20}
\end{equation*}
$$

If the process started at $t=0$, then $x(t)=0$ for $t<0$, and (5.20) goes over into

$$
\begin{equation*}
y(t)=\int_{0}^{t} h(t-\tau) x(\tau) d \tau=\int_{0}^{t} h(\tau) x(t-\tau) d \tau \tag{5.21}
\end{equation*}
$$

The function $h(t)$ is called "impulse response" of the system since it represents the response to $\boldsymbol{x}(\mathrm{t})=\boldsymbol{\delta}(\mathrm{t})$ as may be seen from (5.20). By"transition function"*) $U(t)$ is meant the response of the system to a unit step input $\quad x(t)=H(t)$:

$$
\begin{equation*}
U(t)=\int_{0}^{t} h(t-\tau) d \tau=\int_{0}^{t} h(\lambda) d \lambda \tag{5.22}
\end{equation*}
$$

Finally, if the input to the system is periodic with unit amplitude, $x(t)=e^{i \omega t}$, one obtains, after the transient response has died out, a purely periodic output whose complex amplitude $F(\omega)$ is known as the "frequency response" or "admittance" of the system:

$$
y(t)=F(\omega) e^{i \omega t}=\int_{-\infty}^{t} h(t-\tau) e^{i \omega \tau} d \tau
$$

One finds

$$
\begin{equation*}
F(\omega)=\int_{-\infty}^{t} h(t-\tau) e^{-i \omega(t-\tau)} d \tau=\int_{0}^{\infty} h(\lambda) e^{-i \omega \lambda} d \lambda \tag{5.23}
\end{equation*}
$$

*) not to be confused with "transfer function".

Hence, $F(0)=U(\infty)$.
If in particular, the system may be de scribed by a linear differential equation with constant coefficients,

$$
\begin{equation*}
P(D) y(t)=x(t) H(t) \tag{5.24}
\end{equation*}
$$

with $P(D)$ given by (4.7), then $h(t)$ is that solution of the homogeneous differential equation (5.24)

$$
\begin{equation*}
P(D) h(t)=0 \tag{5.25}
\end{equation*}
$$

which satisfies the initial condition

$$
\begin{aligned}
h(0)= & h^{\prime}(0)=\ldots=h^{(n-2)}(0)=0, h^{(n-1)}(0)=\frac{1}{a_{n}} \\
& \text { Putting } \quad x=e^{i \omega t}, y=F(\omega) e^{i \omega t} \text { in (5.24), }
\end{aligned}
$$

one obtains for the admittance

$$
\begin{equation*}
F(\omega)=\frac{1}{P(i \omega)} \tag{5.27}
\end{equation*}
$$

If, instead of (5.24) one has the diffe
rential equation

$$
\begin{equation*}
P(D) y(t)=Q(D) x(t) \tag{5.28}
\end{equation*}
$$

then

$$
\begin{equation*}
F(\omega)=\frac{Q(i \omega)}{P(i \omega)} \tag{5.29}
\end{equation*}
$$

We consider now the case where $x(t)$ is a stationary random function. The expectation $m y$
is then,

$$
\begin{equation*}
m_{y}=\int_{0}^{t} h(t-\tau) m_{x} d \tau=m_{x} U(t) \tag{5.30}
\end{equation*}
$$

After a sufficiently long time this becomes

$$
\begin{equation*}
m_{y}=F(0) m_{x}=\text { const. } \tag{5.31}
\end{equation*}
$$

Eq. (4.6) gives for the autocorrelation of the outputy

$$
\begin{equation*}
R_{y y}(t, s)=\int_{0}^{t} h(t-\tau) \int_{0}^{s} h(s-\lambda) R_{x x}(\lambda-\tau) d \lambda d \tau \tag{5.32}
\end{equation*}
$$

Integration is, in general, difficult. However, upon introduction of the spectral density with the aid of (5.17)

$$
R_{x x}(\lambda-\tau)=\frac{1}{\pi} \int_{0}^{\infty} S_{x x}(\omega) \cos \omega(\lambda-\tau) d \omega
$$

Eq. (5.32) takes the form

$$
\begin{equation*}
R_{y y}(t, s)=\frac{1}{\pi} \int_{0}^{\infty} S_{x x}(\omega)\left\{\int_{0}^{t}\left[h(t-\tau) \int_{0}^{s} h(s-\lambda) \cos \omega(\lambda-\tau) d \lambda\right] d \tau\right\} d \omega \tag{5.33}
\end{equation*}
$$

which, sometimes, is more convenient for integration. One observes that during the transient period $y(t)$ is not a stationary random function since Ryy then depends on both t and s, and not on the difference t. Only after a sufficiently long time, $t \rightarrow \infty, y(t) b e-$
comes stationary.
Some fundamental relations for this stationary case will now be derived. Multiplying both sides of the second form of (5.20) by $x(t-\lambda)$, and taking expectations, we obtain

$$
\begin{equation*}
E\{y(t) x(t-\lambda)\}=R_{y x}(\lambda)=\int_{0}^{\infty} h(\tau) E\{x(t-\tau) x(t-\lambda)\} d \tau=\int_{0}^{\infty} h(\tau) R_{x x}(\lambda-\tau) d \tau \tag{5.34}
\end{equation*}
$$

We multiply now both sides of this equation by $e^{-i \omega \lambda}$ and integrate between $-\infty$ and $+\infty$. We get

$$
\begin{gathered}
\int_{-\infty}^{+\infty} R_{y x}(\lambda) e^{-i \omega \lambda} d \lambda=S_{y x}(\omega)=\int_{0}^{\infty} h(\tau) \int_{-\infty}^{\infty} R_{x x}(\lambda-\tau) e^{-i \omega \lambda} d \lambda d \tau= \\
=\int_{0}^{\infty} h(\tau) e^{-i \omega \tau} d \tau \int_{-\infty}^{+\infty} R_{x x}(\varepsilon) e^{-i \omega \varepsilon} d \varepsilon
\end{gathered}
$$

or, taking (5.23) into account,

$$
\begin{equation*}
S_{y x}(\omega)=S_{x x}(\omega) F(\omega) \tag{5.35}
\end{equation*}
$$

Now we repeat the procedure by multiply ing (5.20) with $y(t+\lambda)$. Taking expectations we find

$$
\begin{equation*}
E\{y(t) y(t+\lambda)\}=R_{y y}(\lambda)=\int_{0}^{\infty} h(\tau) E\{x(t-\tau) \cdot y(t+\lambda)\} d \tau=\int_{0}^{\infty} h(\tau) R_{y x}(\lambda+\tau) d \tau \tag{5.36}
\end{equation*}
$$

If, again, this is multiplied by $e^{-i \omega \lambda}$ and integrat-
ed, one has

$$
\begin{aligned}
S_{y y}(\omega) & =\int_{-\infty}^{+\infty} R_{y y}(\lambda) e^{-i \omega \lambda} d \lambda=\int_{0}^{\infty} h(\tau) \int_{-\infty}^{\infty} R_{y x}(\lambda+\tau) e^{-i \omega \lambda} d \lambda d \tau= \\
& =\int_{0}^{\infty} h(\tau) e^{+i \omega \tau} d \tau \int_{-\infty}^{+\infty} R_{y x}(\varepsilon) e^{-i \omega \varepsilon} d \varepsilon
\end{aligned}
$$

and, therefore,

$$
\begin{equation*}
S_{y y}(\omega)=S_{y x}(\omega) F^{*}(\omega) \tag{5.37}
\end{equation*}
$$

Finally, upon substituting (5.35) into
(5.37), one obtains the following basic relation between the spectral densities of input and output of a linear system in the stationary state

$$
\begin{equation*}
S_{y y}(\omega)=F(\omega) F^{*}(\omega) S_{x x}(\omega) \tag{5.38}
\end{equation*}
$$

$F(\omega) \mathbf{F}^{*}(\boldsymbol{\omega})$ is the square of the absolute value of the admittance and is, therefore, a real quantity.

As an example, the spectral density $S_{\dot{x} \dot{x}}$ of the derivative $y=d x / d t$ of a stationary process $x(t)$ is, with $F(\omega)=i \omega$,

$$
\begin{equation*}
S_{\dot{x} \dot{x}}(\omega)=\omega^{2} S_{x x}(\omega) \tag{5.39a}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
S_{\dddot{x} \ddot{x}}(\omega)=\omega^{4} S_{x x}(\omega) \tag{5.39b}
\end{equation*}
$$

Some Important Correlation Functions and Spectral Densities

$x(t)$	$R(\tau)$	$S(\boldsymbol{\omega})$
$\begin{gathered} a x(t) \\ \dot{x}(t) \\ \frac{d^{n} x}{d t^{n}} \\ x(t) e^{ \pm i \omega_{0} t} \end{gathered}$ (1)	$\begin{gathered} \partial \partial^{*} R(\tau) \\ -\frac{d^{2} R}{d \tau^{2}} \\ (-1)^{n} \frac{d^{2 n} R}{d \tau^{2 n}} \\ R(\tau) e^{ \pm i \omega_{0} \tau} \\ e^{-\alpha\|\tau\|} \end{gathered}$	$\begin{aligned} & \text { aa*S }(\omega) \\ & \omega^{2} S(\omega) \\ & \omega^{2 n} S(\omega) \\ & S\left(\omega \pm \omega_{0}\right) \\ & \frac{2 \alpha}{\omega^{2}+\alpha^{2}} \end{aligned}$
(2)		$\frac{4}{T \omega^{2}} \sin ^{2}\left(\frac{\omega T}{2}\right)$
(3)	1	$2 \pi \delta(\omega)$
$\begin{gathered} (4) \\ \begin{array}{c} \text { band-1imited } \\ \text { noise } \end{array} \\ \hline \end{gathered}$	$\frac{2}{\pi} \frac{\sin \alpha \tau}{\tau}$	
(5) white noise	$\delta(\tau)$	1

(6)	$\cos \omega_{0} \tau$	$\pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]$
(7)	$e^{-\alpha\|\tau\|} \cos \beta \tau$	$\frac{2 \alpha\left(\omega^{2}+\alpha^{2}+\beta^{2}\right)}{\left(\omega^{2}-\beta^{2}-\alpha^{2}\right)^{2}+4 \alpha^{2} \omega^{2}}$
(8)	$e^{-\alpha\|\tau\|}\left(\cos \beta \tau+\frac{\alpha}{\beta} \sin \beta\|\tau\|\right)$	$\frac{4 \alpha\left(\alpha^{2}+\beta^{2}\right)}{\left(\omega^{2}-\beta^{2}-\alpha^{2}\right)^{2}+4 \alpha^{2} \omega^{2}}$
(9)	$e^{-\alpha^{2} \tau^{2}} \cos \beta \tau$	$\frac{\sqrt{\pi}}{2 \alpha}\left[\exp \left(-\frac{(\omega+\beta)^{2}}{4 \alpha^{2}}\right)+\exp \left(-\frac{(\omega-\beta)^{2}}{4 \alpha^{2}}\right)\right]$
(10)	$\sum_{k=0}^{n} a_{k} \delta^{(k)}(\tau)$	$\sum_{k=0}^{n}(i \omega)^{k} a_{k},\left[\delta^{(k)}=\frac{\alpha^{k}}{d t^{k}} \delta(t)\right]$

Note.*) We have shown (p. 32) that for the existence of the derivative in mean square $\dot{x}(t)$ of a random process $x(t)$ the existence of the first and second derivatives in $\tau=0$ of the autocorrelation is necessary and sufficient. Now, in general, there can be no doubt as to the differentiability of the random functions occurring in engineering applications. However, the analytical expressions chosen to approximate the correlation functions obtained in experiment are frequently so simple, cf. (1), (7), (8) in the preceding table, that they belong to nondifferentiable processes like (1) and (7), or to processes that are only differentiable once, like (8).

It is, therefore, of great importance that, at least in the stationary case, it can be shown that correlation theory and, in particular, the fundamental relation (5.38) remain valid even if, formally, the derivatives of arbitrary order of nondifferentiable functions are involved.

Consider differential equation (5.28).
It suffices to take $Q(D)=D^{m}$. Eq. (5.20) then renders for the stationary solution

$$
y(t)=\int_{0}^{\infty} h(\tau) \frac{d^{m} x(t-\tau)}{d \tau^{m}} d \tau
$$

*) See $[8]$, p. 80

Repeated integration by parts transforms this equation into a form which no longer contains the derivatives of $x(t)$. The integrated parts drop out as a consequence of (5.26) and we obtain

$$
y(t)=(-1)^{m} \int_{0}^{\infty} \frac{d^{m} h(\tau)}{d \tau^{m}} x(t-\tau) d \tau
$$

For the correlation function of $y(t)$ one has, therefore,

$$
R_{y y}(\lambda)=E\{y(t) y(t+\lambda)\}=\int_{0}^{\infty} \int_{0}^{\infty} \frac{d^{m} h(\tau)}{d \tau^{m}} \frac{d^{m} h(s)}{d s^{m}} R_{x x}(\lambda+\tau-s) d \tau d s
$$

Employing (5.17) to express $R_{x x}$ in terms of the spectral density $S_{x x}(\omega)$ we get

$$
R_{y y}(\lambda)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{i \omega \lambda}\left[\int_{0}^{\infty} \frac{d^{m} h(\tau)}{d \tau^{m}} e^{i \omega \tau} d \tau \int_{0}^{\infty} \frac{d^{m} h(s)}{d s^{m}} e^{-i \omega s} d s\right] S_{x x}(\omega) d \omega
$$

If we now again integrate by parts the integrated parts vanish and we obtain

$$
R_{y y}(\lambda)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{i \omega \lambda}\left|(i \omega)^{m}\right|^{2}\left|\int_{0}^{\infty} h(\tau) e^{-i \omega \tau} d \tau\right|^{2} S_{x x}(\omega) d \omega
$$

According to (5.23) the second integral represents the admittance of the left side of (5.28), i.e.,
$1 / P(i \omega)$, while $(i \omega)^{m}$ is identical with $Q(i \omega)$. Using (5.29) we have, therefore, obtained relation (5.38) without assuming the existence of the derivative $d^{m} x / d t^{m}$!

6. The Poisson Process .

As a first special random process of considerable practical interest we discuss the Poisson process.

Let an event occur in irregular time intervals. Examples are the emission of an electron from the cathode of a tube, or the arrival of customers at a service station, or, also, the occurrence of accidents, the rupture of a machine component, etc.

Common to all these events is that they may be characterized by a counting function $x(t)$ giving the number of events that occurred in the time in terval ($0, t$], open on the left, provided we start count-

Fig. 1.6 ing at time $t=0$. Hence, the random variable \boldsymbol{x} can take on only the integer values $0,1,2 \ldots$ and $x(t)$ is a discontinuous process. Initially $\quad x(0)=0$. Such a counting process is called Poisson process provided it satisfies the following con

ditions:

(I) The increments $x(t)-x(s)$ are independent. If the random variables $x(t)-x(s)$ and $x(t+h)-x(s+h)$ have the same p.-distribution we speak of a process with stationary increments.

$$
\left.\begin{array}{l}
P[x(t+s)-x(t)=1]=v s \\
P[x(t+s)-x(t) \geqslant 2]=0 \tag{6.1}\\
P[x(t+s)-x(t)=0]=1-v s
\end{array}\right\} \text { for } s \rightarrow 0
$$

In words: In a sufficiently small time-interval s the probability that one event will occur is proportional to s, while the probability that two or more events will occur is zero. Hence, the probability that either one or no event at all occurs is one.

The factor of proportionality $\boldsymbol{\nu}$ may be constan (homogeneous process), or may depend on time, $\quad \boldsymbol{\nu}=\boldsymbol{\nu}(\mathrm{t})$, (inhomogeneous process). We look first for the probabilities

$$
\begin{equation*}
P[x(t)=n] \equiv p_{n}(t) \quad(n=0,1,2 \ldots) \tag{6.2}
\end{equation*}
$$

At two arbitrary time instants t and $t+s$ we have from condition (I)

$$
\begin{equation*}
p_{n}(t+s)=p_{0}(t) q_{n}(s)+p_{1}(t) q_{n-1}(s)+\ldots p_{n}(t) q_{0}(s)=\sum_{i=0}^{n} p_{i}(t) q_{n-i}(s) \tag{6.3}
\end{equation*}
$$

We expand in powers of 5 and let $s \longrightarrow 0$. Using the initial condition

$$
\begin{equation*}
p_{n}(0)=0 \tag{6.4}
\end{equation*}
$$

and condition (II) for the conditional probabilities

$$
\left.\begin{array}{l}
q_{n}(s)=0 \quad \text { for } n \geqslant 2 \\
q_{1}(s)=\nu s \\
q_{0}(s)=1-v s
\end{array}\right\} \begin{aligned}
& s \rightarrow 0
\end{aligned}
$$

we find

$$
p_{n}(t)+s \frac{d p_{n}(t)}{d t}+\ldots=\ldots p_{n-1}(t) v s+p_{n}(t)[1-v s]
$$

or

$$
\begin{equation*}
\frac{d p_{n}(t)}{d t}+v p_{n}(t)=v p_{n-1}(t) \tag{6.6}
\end{equation*}
$$

The solution of this linear differential-differenceequation is, for $\boldsymbol{\nu}=$ const, taking initial condition (6.4) into consideration, given by

$$
\begin{equation*}
p_{n}(t)=e^{-\nu t} \frac{(\nu t)^{n}}{n!} \tag{6.7}
\end{equation*}
$$

The parameter \boldsymbol{v} is called density or intensity of the Poisson process. If ν is not constant the Poisson process is called non-homogeneous and can be reduced to a homogeneous process. In the following ν will be assumed to be constant.

Expectation $E\{x(t)\}=m(t)$ is, according to (3.8), given by

$$
m(t)=\sum_{n=1}^{\infty} n p_{n}(t)=e^{-\nu t} \sum_{n=1}^{\infty} n \frac{(\nu t)^{n}}{n!}
$$

Upon differentiating the series

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

termwise with respect to \boldsymbol{x} one obtains

$$
e^{x}=\sum_{n=1}^{\infty} n \frac{x^{n-1}}{n!}=\frac{1}{x} \sum n \frac{x^{n}}{n!}
$$

and, hence,

$$
\begin{equation*}
m(t)=v t \tag{6.8}
\end{equation*}
$$

In the same manner one finds for

$$
E\left\{x^{2}(t)\right\}=\sum_{n=1}^{\infty} n^{2} p_{n}(t)=e^{-v t} \sum_{n=1}^{\infty} n^{2} \frac{(\nu t)^{n}}{n!}
$$

by differentiating the series for e^{x} twice

$$
E\left\{x^{2}(t)\right\}=(\nu t)^{2}+\nu t
$$

The variance is, therefore,

$$
\begin{equation*}
\sigma_{x}^{2}=\nu t \tag{6.9}
\end{equation*}
$$

For the random variable $\boldsymbol{x}(\mathrm{t})-\boldsymbol{x}(\mathrm{s})$ we find, using (I) and Eq. (2.28),

$$
\begin{equation*}
P[x(t)-x(s)=n]=p_{n}(t-s) \tag{6.10}
\end{equation*}
$$

Hence, the increments are also stationary, and

$$
\begin{align*}
& E[x(t)-x(s)]=v(t-s) \tag{6.11}\\
& E\left\{[x(t)-x(s)]^{2}\right\}=v^{2}(t-s)^{2}+v(t-s) \tag{6.12}
\end{align*}
$$

We consider now four time instances
$t_{1}, t_{2}, t_{3}, t_{4}$. If the corresponding intervals do not overlap, $t_{1}>t_{2}>t_{3}>t_{4}$, the variables $x\left(t_{1}\right)-x\left(t_{2}\right)$ and $\boldsymbol{x}\left(t_{3}\right)-x\left(t_{4}\right)$ are independent and we have

$$
\begin{gather*}
E\left\{\left[x\left(t_{1}\right)-x\left(t_{2}\right)\right]\left[x\left(t_{3}\right)-x\left(t_{4}\right)\right]\right\}=E\left[x\left(t_{1}\right)-x\left(t_{2}\right)\right] E\left[x\left(t_{3}\right)-x\left(t_{4}\right)\right]= \\
=v^{2}\left(t_{1}-t_{2}\right)\left(t_{3}-t_{4}\right) \tag{6.13}
\end{gather*}
$$

If, on the other hand, the intervals do overlap,

$$
t_{1}>t_{3}>t_{2}>t_{4}, \text { Eq. (6.13) no longer holds. }
$$

Putting, however,

$$
\begin{aligned}
& x\left(t_{1}\right)-x\left(t_{2}\right)=\left[x\left(t_{1}\right)-x\left(t_{3}\right)\right]+\left[x\left(t_{3}\right)-x\left(t_{2}\right)\right] \\
& x\left(t_{3}\right)-x\left(t_{4}\right)=\left[x\left(t_{3}\right)-x\left(t_{2}\right)\right]+\left[x\left(t_{2}\right)-x\left(t_{4}\right)\right]
\end{aligned}
$$

Eq. (6.13) can be used again and one obtains after some algebra, using (6.12)

$$
\begin{equation*}
E\left\{\left[x\left(t_{1}\right)-x\left(t_{2}\right)\right]\left[x\left(t_{3}\right)-x\left(t_{4}\right)\right]\right\}=v^{2}\left(t_{1}-t_{2}\right)\left(t_{3}-t_{4}\right)+v\left(t_{3}-t_{2}\right) \tag{6.14}
\end{equation*}
$$

$t_{3}-t_{2}$ is the length of the overlapping interval. Putting $\quad t_{1}=t, t_{3}=s, t_{2}=t_{4}=0$ in Eq. (6.14) the autocorrelation follows as

$$
\begin{equation*}
R(t, s)=E\{x(t) x(s)\}=v^{2} t s+v s \quad(t \geqslant s) \tag{6.15}
\end{equation*}
$$

The characteristic function is

$$
\begin{equation*}
\varphi(q)=\exp \left[v t\left(e^{i q}-1\right)\right] \tag{6.16}
\end{equation*}
$$

7. The Wiener Process .

This process, named after Norbert Wiener, represents the mathematical model of the Brownian mo tion. However, it senms to be applicable to entirely different phenomena too, the stock market, for in-
stance $[10]$.
We consider a particle in a medium in equilibrium. Since it is continuously being pushed by the fluid or gas molecules it describes a random path. Its displacement $x(t)-x(s)$, in a time interval which is large in comparison with the time bet ween two subsequent pushes, may be considered as the sum of a large number of small irregular displacements. According to the central limit theorem it appears, therefore, reasonable to consider $\boldsymbol{x}(\mathrm{t})-\boldsymbol{x}(\mathrm{s})$ as being normally distributed and, since the surround ing medium is in equilibrium, as stationary*) Finally, we assume that the displacements or displacement increments over non-overlapping time intervals are independent.

This leads to the following definition of the Wiener process:
(I) $\{x(t), t \geqslant 0\}$
has independent stationary increments.
(II) For each $t>0 \quad x(t)$ is normally distributed.
(III) For all $t>0 \quad E\{x(t)\}=0$.
(IV) $\quad x(0)=0$
*) The process $x(t)$ itself is not stationary!

From (II) and (III) we have at once for the p.-density

$$
\begin{equation*}
p(x ; t)=\frac{1}{\sqrt{2 \pi} \sigma(t)} \exp \left[-\frac{x^{2}}{2 \sigma^{2}(t)}\right] \tag{7.1}
\end{equation*}
$$

Furthermore, using assumption(IV),

$$
\begin{aligned}
& \operatorname{Var}\{x(t+\tau)\}=\operatorname{Var}\{[x(t+\tau)-x(t)]+[x(t)-x(0)]\}= \\
& =E\left\{[x(t+\tau)-x(t)]^{2}\right\}+E\left\{[x(t)-x(0)]^{2}\right\}+2 E\{[x(t+\tau)-x(t)][x(t)-x(0)]\}
\end{aligned}
$$

Since, by assumption (I), the increments are independ ent the last term is equal to the product of the expectations and vanishes therefore as a consequence of assumption (III). Noting finally that, by assumption (I), the increments are also stationary,

$$
E\left\{[x(t+\tau)-x(t)]^{2}\right\}=E\left\{[x(\tau)-x(0)]^{2}\right\}=E\left\{[x(\tau)]^{2}\right\}
$$

one obtains the following functional equation for the variance of the Wiener process

$$
\operatorname{Var}\{x(t+\tau)\}=\operatorname{Var}\{\boldsymbol{x}(t)\}+\operatorname{Var}\{\boldsymbol{x}(\tau)\}
$$

The only continuous, nonnegative solution of this equation is

$$
\begin{equation*}
\operatorname{Var}\{x(t)\}=\sigma^{2}(t)=\alpha t \tag{7.2}
\end{equation*}
$$

Hence, also

$$
\begin{equation*}
\operatorname{Var}\{x(t)-x(s)\}=\alpha|t-s| \tag{7.3}
\end{equation*}
$$

Eq. (7.1) now goes over into

$$
\begin{equation*}
p(x ; t)=\frac{1}{\sqrt{2 \pi \alpha t}} \exp \left[-\frac{x^{2}}{2 \alpha t}\right] \tag{7.4}
\end{equation*}
$$

The constant $\boldsymbol{\alpha}$ follows from experiment. For the Brownian motion it was also determined theoretically by Einstein, see $[11]$, p. 93 .

The Wiener process may be considered as the integral of Gaussian white noise:

$$
\begin{equation*}
x(t)=\int_{0}^{t} w(\tau) d \tau \tag{7.5}
\end{equation*}
$$

Indeed, all assumptions (I) to (IV) are satisfied.
Normality follows from the linearity of the integral operator while for the variance one has, using (4.6) with $R_{w}(\tau)=\alpha \boldsymbol{\delta}(\tau)$

$$
\sigma^{2}(t)=\alpha \int_{0}^{t} d s \int_{0}^{t} \delta(\tau) d \tau=\alpha \int_{0}^{t} d s=\alpha t
$$

Last we show that the conditional p.-density $p(x ; t \mid a ; s)$ of the Wiener process sat-
isfies the diffusion equation

$$
\begin{equation*}
\frac{\partial p}{\partial t}=\frac{\alpha}{2} \frac{\partial^{2} p}{\partial x^{2}} \tag{7.6}
\end{equation*}
$$

Since $\boldsymbol{x}(\mathrm{t})$ is normal with zero mean we have for the conditional expectation from Eq. (2.38)

$$
E\{x(t) \mid x(s)=a\}=\frac{E\{x(t) x(s)\}}{E\left\{x^{2}(s)\right\}} \cdot a
$$

However, from Eq. (7.3) for $t \geqslant 5$,

$$
E\left\{[x(t)-x(s)]^{2}\right\}=E\left\{[x(t)]^{2}\right\}+E\left\{[x(s)]^{2}\right\}-2 E\{x(t) x(s)\}=\alpha(t-s)
$$

whence, using Eq. (7.2),

$$
\begin{equation*}
E\{x(t) x(s)\}=\alpha s \quad(t \geqslant s) \tag{7.7}
\end{equation*}
$$

and

$$
\begin{equation*}
E\{x(t) \mid x(s)=a\}=a \tag{7.8}
\end{equation*}
$$

Similarly, one finds from Eq. (2.39) for the condition al variance
$\operatorname{Var}\{x(t) \mid x(s)=a\}=E\left\{[x(t)-a]^{2} \mid x(s)=a\right\}=\alpha t-\frac{(\alpha s)^{2}}{\alpha s}=\alpha(t-s)$

The conditional p.-density of the Wiener process is, therefore,

$$
\begin{equation*}
p(x ; t \mid a ; s)=\frac{1}{\sqrt{2 \pi \alpha(t-s)}} \exp \left[-\frac{(x-a)^{2}}{2 \alpha(t-s)}\right] \tag{7.10}
\end{equation*}
$$

which may easily be shown to satisfy Eq. (7.6).
Eq. (7.6) is a special form of the Fokker-Planck equation to be discussed in the next sec tion.

8. Markov Sequences .

As a preliminary to the discussion of the Markov process we first briefly discuss Markov sequences.

Through Eq. (1.4) we have introduced conditional probability. Consider now a sequence $x_{1}, x_{2} \ldots x_{n} \ldots$ of random variables*) The expression

$$
P\left[x_{n} \leqslant X_{n} \mid x_{n-1}=X_{n-1}, x_{n-2}=X_{n-2} \ldots x_{1}=X_{1}\right]=F\left(X_{n} \mid X_{n-1}, \ldots X_{1}\right)
$$

*) Such a sequence may be looked upon as a special case of a random process $x(t)$ where only the values $x_{i}=x\left(t_{i}\right)$ at certain discrete time instants $t_{1}, t_{2} \ldots$ are registered.
then represents the probability that $\quad x_{n} \leqslant X_{n}$ $i f$ one already knows the values $X_{n-1}, X_{n-2} \ldots X_{1}$ that have been taken on by the preceding terms \boldsymbol{x}_{n-1}, $x_{n-2} \ldots x_{1}$ in the sequence.
In general, each preceding value will have some influ ence on the probability of x_{n}. If, however, only the value X_{n-1} immediately preceding x_{n} influences the probability of x_{n} while all other values $X_{n-2} \ldots X_{1}$ are without influence,

$$
\begin{equation*}
F\left(x_{n} \mid x_{n-1}, x_{n-2} \ldots x_{1}\right)=F\left(x_{n} \mid x_{n-1}\right) \tag{8.2}
\end{equation*}
$$

we speak of a Markov sequence. The conditional proba bility (8.2) is frequently called transition probability.

For a continuous sequence a p.-density exists given by

$$
\begin{equation*}
p\left(x_{n} \mid x_{n-1}, x_{n-2} \ldots x_{1}\right)=p\left(x_{n} \mid x_{n-1}\right) \tag{8.3}
\end{equation*}
$$

Therefore, while the joint p.-density for an arbitra ry sequence is, according to Eq. (1.4), given by

$$
p\left(x_{1}, x_{2} \ldots x_{n}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}, x_{1}\right) \ldots \text { (8.4) }
$$

this reduces for a Markov sequence to
$p\left(x_{1}, x_{2} \ldots x_{n}\right)=p\left(x_{n} \mid x_{n-1}\right) p\left(x_{n-1} \mid x_{n-2}\right) \ldots p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)$ (8.5)

From (8.3) we conclude that

$$
\begin{equation*}
E\left\{x_{n} \mid x_{n-1}, x_{n-2} \ldots x_{1}\right\}=E\left\{x_{n} \mid x_{n-1}\right\} \tag{8.6}
\end{equation*}
$$

The two random variables x_{n} and x_{s} of a Markov sequence are, for $n>r>s$ conditionally independent, since

$$
\begin{equation*}
p\left(x_{n}, x_{s} \mid x_{r}\right)=p\left(x_{n} \mid x_{r}\right) p\left(x_{s} \mid x_{r}\right) \tag{8.7}
\end{equation*}
$$

Proof: Since (8.5) holds for any subsequence of a Markov sequence it follows from (1.4) that

$$
p\left(x_{n}, x_{s} \mid x_{r}\right)=\frac{p\left(x_{n}, x_{r}, x_{s}\right)}{p\left(x_{r}\right)}=\frac{p\left(x_{n} \mid x_{r}\right) p\left(x_{r} \mid x_{s}\right) p\left(x_{s}\right)}{p\left(x_{r}\right)}
$$

whence, because of $p\left(x_{r} \mid x_{s}\right) p\left(x_{s}\right)=p\left(x_{r}\right) p\left(x_{s} \mid x_{r}\right)^{*)}$, Eq. (8.7) follows.

Integration over a random variable from
$-\infty$ to $+\infty$ eliminates it from the p.-density:

$$
\begin{equation*}
p\left(x_{n}, x_{s}\right)=\int_{-\infty}^{+\infty} p\left(x_{n}, x_{r}, x_{s}\right) d x_{r} \tag{8.8}
\end{equation*}
$$

*) A Markov sequence is Markov also in reverse:

$$
p\left(x_{n} \mid x_{n+1}, x_{n+2} \ldots x_{n+k}\right)=p\left(x_{n} \mid x_{n+1}\right)
$$

Similarly, for the conditional density,

$$
\begin{equation*}
p\left(x_{n} \mid x_{s}\right)=\int_{-\infty}^{+\infty} p\left(x_{n} \mid x_{r}, x_{s}\right) p\left(x_{r} \mid x_{s}\right) d x_{r} \tag{8.9}
\end{equation*}
$$

If this rule for the elimination of a random variable is applied to a Markov sequence the Chapman - Kolmogorov integral equation results:

$$
\begin{equation*}
p\left(x_{n} \mid x_{s}\right)=\int_{-\infty}^{+\infty} p\left(x_{n} \mid x_{r}\right) p\left(x_{r} \mid x_{s}\right) d x_{r} \tag{8.10}
\end{equation*}
$$

or, upon multiplication by $p\left(\boldsymbol{x}_{\mathrm{s}}\right)$ and integration

$$
\begin{equation*}
p\left(x_{n}\right)=\int_{-\infty}^{+\infty} p\left(x_{n} \mid x_{r}\right) p\left(x_{r}\right) d x_{r} \tag{8.11}
\end{equation*}
$$

If the Markov sequence x_{i} can only take on the discrete values

$$
a_{1}, a_{2} \ldots a_{N}
$$

such that

$$
\begin{equation*}
P\left[x_{n}=a_{i} \mid x_{n-1}=a_{j}, x_{n-2}=a_{k}, \ldots x_{1}=a_{\ell}\right]=P\left[x_{n}=a_{i} \mid x_{n-1}=a_{j}\right] \tag{8.12}
\end{equation*}
$$

it is called a Markov chain. Using the following nota tion for absolute and conditional probabilities

$$
\begin{equation*}
P\left[x_{n}=a_{i}\right]=p_{i}(n), P\left[x_{n}=a_{i} \mid x_{s}=a_{j}\right]=p_{i j}(n, s) \tag{8.13}
\end{equation*}
$$

دne immediately has the relations

$$
\begin{align*}
& \sum_{i=1}^{N} p_{i}(n)=1, \sum_{i=1}^{N} p_{i j}(n, s)=1 \tag{8.14}\\
& p_{i j}(n, s)=\sum_{k=1}^{N} p_{i k}(n, r) p_{k j}(r, s) \\
& p_{i}(n)=\sum_{j=1}^{N} p_{i j}(n, s) p_{j}(s) \tag{8.16}
\end{align*}
$$

The last two equations are the discrete version of Eq. (8.10) and (8.11).

If, for every j, the "expectation" of the p.-distribution $P_{j k}$ equals a_{j},

$$
\begin{equation*}
\sum_{j} a_{j} P_{j k}=a_{k} \tag{8.17}
\end{equation*}
$$

the Markov chain is called a martingale ${ }^{*)}$

9. Markov Processes .

In consequent extension of Eq. (8.2) a random process is called Markov process if
$P\left[x\left(t_{n}\right) \leqslant X_{n} \mid x\left(t_{n-1}\right)=X_{n-1}, \ldots x\left(t_{1}\right)=X_{1}\right]=P\left[x\left(t_{n}\right) \leqslant X_{n} \mid x\left(t_{n-1}\right)=X_{n-1}\right]$
*) Word from the French Provence denoting systematic betting.
for every $t_{n}>t_{n-1}$.. $>t_{1}$. In other words: if $x\left(t_{0}\right)$ has been fixed no condition that may be imposed on $\left\{x(t), t<t_{0}\right\}$ has any influence upon the statistics for $t>t_{0}$. Statistical behavior in the future is uniquely determined by the present, independent of the past.

$$
\text { If, for a process, } x\left(t_{2}\right)-x\left(t_{1}\right) \text { for } t_{2}>t_{1}
$$ is independent of $x(t)$ for every $t \leqslant t_{1}$, the process is Markov. Indeed, $\boldsymbol{x}\left(\mathrm{t}_{2}\right)$ then depends only on $\boldsymbol{x}\left(\mathrm{t}_{1}\right)$ but not also on any preceding value. It follows, in particular, that a process with independent increments is Markov, provided $\quad x(0)=0$, since then $x\left(t_{2}\right)-x\left(t_{1}\right)$ is inde pendent of $x(t)-x(0)=x(t)$ for all $t \leqslant t_{1}$. Hence, both the Poisson process and the Wiener process are Markov.

The equations of the preceding section remain valid provided x_{n} is replaced by $\boldsymbol{x}\left(t_{n}\right)$. For instance, Eq. (8.5) for a continuous process becomes

$$
\begin{equation*}
p\left(x_{1}, x_{2} \ldots x_{n} ; t_{1}, t_{2} \ldots t_{n}\right)=p\left(x_{1} ; t_{1}\right) \prod_{r=2}^{n} p\left(x_{r} ; t_{r} \mid x_{r-1} ; t_{r-1}\right) \tag{9.2}
\end{equation*}
$$

The Chapman - Kolmogorov equation (8.10) reads now

$$
\begin{equation*}
p\left(x ; t \mid x_{0} ; t_{0}\right)=\int_{-\infty}^{+\infty} p\left(x ; t \mid x_{1} ; t_{1}\right) p\left(x_{1} ; t_{1} \mid x_{0} ; t_{0}\right) d x_{1} \tag{9.3}
\end{equation*}
$$

and Eq. (8.11) becomes

$$
\begin{equation*}
p(x ; t)=\int_{-\infty}^{+\infty} p\left(x ; t \mid x_{0} ; t_{0}\right) p\left(x_{0} ; t_{0}\right) d x_{0} \tag{9.4}
\end{equation*}
$$

Analogous relations hold for n-dimension
al processes

$$
x(t)=\left[x_{1}(t), x_{2}(t) \ldots x_{n}(t)\right]
$$

If a process $x(t)$ is determined by the initial value problem

$$
\begin{equation*}
\frac{d x}{d t}=f(x ; t)+g(t), \quad x\left(t_{0}\right)=x_{0} \tag{9.5}
\end{equation*}
$$

and if the random function $g(t)$ has the property that $g\left(t_{1}\right), g\left(t_{2}\right) \ldots g\left(t_{n}\right)$ are independent ${ }^{*)}$ for every $t_{1}<t_{2} \ldots \ldots<t_{n}$, then $\boldsymbol{x}(t)$ is a Markov proces. Indeed, $\boldsymbol{x}(t)$ is uniquely determined by its initial value $\boldsymbol{x}\left(\mathrm{t}_{0}\right)$ and the values $\boldsymbol{g}(\mathrm{t})$ in the interval $\left(t_{0}, t\right)$. All preceding values of $x(t)$ are of no influence.
*) $g(t)$ is then called a purely random function, and is defined completely by its p. -density $p_{1}(x ; t)$, since then

$$
p_{n}\left(x_{1} \ldots x_{n} ; t_{1} \ldots t_{n}\right)=p_{1}\left(x_{1} ; t_{1}\right) \ldots p_{1}\left(x_{n} ; t_{n}\right)
$$

An extreme case is white noise.

The same holds for a differential equation of order n which can always be reduced to a system of n differential equations of order one and hence, to an n-dimensional Markov process.

For a normally distributed Markov process with mean value zero

$$
\begin{equation*}
R\left(t_{2}, t\right) R\left(t, t_{1}\right)=R\left(t_{2}, t_{1}\right) R(t, t) \tag{9.6}
\end{equation*}
$$

for all $t_{2}>t>t_{1}$. Proof: Let $x\left(t_{2}\right)=u, x(t)=y$, $x\left(t_{1}\right)=z$ and construct a function $w=u-\alpha y-\beta z$, orthogonal to y and $z c f . p .21$. Then

$$
E\{u-\alpha y-\beta z \mid y, z\}=E\{u \mid y\}-\alpha y-\beta z=0
$$

and

$$
\alpha\left\langle y^{2}\right\rangle+\beta\langle y z\rangle=\langle u y\rangle, \alpha\langle y z\rangle+\beta\left\langle z^{2}\right\rangle=\langle u z\rangle
$$

But $\beta=0$ from the first equation. Substitution into the second and third equation gives (9.6).

If, in addition, the process is stationary, Eq. (9.6) goes over into

$$
R(t) R(\tau)=R(t+\tau) R(0)
$$

whence

$$
\begin{equation*}
R(\tau)=R(0) e^{-\alpha|\tau|} \tag{9.7}
\end{equation*}
$$

Therefore, the autocorrelation of a stationary, normal ly distributed Markov process must have the exponential form (9.7)! Stationary Gaussian processes will,
therefore, in general not be Markovian.
Finding the p.-densities of an arbitrary random process is, in general, a difficult, if not impossible task. For the transition probability of a Markov process, however, a differential equation exists known as Fokker - Planck equation, or Kolmogorov equation.

The starting point for the derivation of this equation is the Chapman - Kolmogorov integral equation (9.3). We generalize it immediately to an n-dimensional Markov process $\boldsymbol{x}(\mathrm{t})=\left[\boldsymbol{x}_{1}(\mathrm{t}) \ldots \boldsymbol{x}_{\mathrm{n}}(\mathrm{t})\right]$: $p\left(x ; t+\tau \mid x_{0} ; 0\right)=\int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty} p(x ; t+\tau \mid y ; t) p\left(y ; t \mid x_{0} ; 0\right) d y_{1} \ldots d y_{n}$

Multiplication of both sides of this equation with an arbitrary scalar function $\quad R(\boldsymbol{x})$ which vanishes for $\quad x_{1} \rightarrow \infty, \ldots x_{n} \rightarrow \infty$, and integration leads to

$$
\int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty} R(x) p\left(x, t+\tau \mid x_{0} ; 0\right) d x_{1} \ldots d x_{n}=
$$

$$
=\int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty} d y_{1} \ldots d y_{n} \int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty} R(x) p(x ; t+\tau \mid y ; t) p\left(y, t \mid x_{0} ; 0\right) d x_{1} \ldots d x_{n}
$$

We now expand $R(x)$ in a Taylor series in terms of $\left(x_{i}-y_{i}\right)$

$$
R(x)=R(y)+\sum_{i=1}^{n}\left(x_{i}-y_{i}\right) \frac{\partial R}{\partial y_{i}}+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(x_{i}-y_{i}\right)\left(x_{j}-y_{j}\right) \frac{\partial^{2} R}{\partial y_{i} \partial y_{j}}+\ldots
$$

and substitute into the right-hand side of the preced ing equation:

$$
\begin{aligned}
& \int \ldots \int d y_{1} \ldots d y_{n}[R(y) p\left(y, t \mid x_{0} ; 0\right) \underbrace{\int \ldots \int p(x ; t+\tau \mid y ; t) d x_{1} \ldots d x_{n}}_{1}+ \\
& +\sum_{i} \frac{\partial R}{\partial y_{i}} p\left(y ; t \mid x_{0} ; 0\right) \underbrace{\int \ldots \int\left(x_{i}-y_{i}\right) p\left(x_{i} t+\tau \mid y ; t\right) d x_{1} \ldots d x_{n}}_{a_{i}(y, t, \tau)}+ \\
& +\frac{1}{2} \sum_{i} \sum_{j} \frac{\partial^{2} R}{\partial y_{i} \partial y_{j}} p\left(y ; t \mid x_{0} ; 0\right) \underbrace{\int \ldots \int\left(x_{i}-y_{i}\right)\left(x_{j}-y_{j}\right) p\left(x_{;} t+\tau \mid y ; t\right) d x_{1} \ldots d x_{n}+\ldots}_{b_{i j}(y, t, \tau)} \\
& =\int \ldots \int\left[R(x) p\left(x ; t \mid x_{0} ; 0\right)+\sum_{i} a_{i}\left(x_{1}, t, \tau\right) \frac{\partial R}{\partial x_{i}} p\left(x ; t \mid x_{0} ; 0\right)+\right. \\
& \left.+\frac{1}{2} \sum_{i} \sum_{j} b_{i j}(x, t, \tau) \frac{\partial^{2} R}{\partial x_{i} \partial x_{j}} p\left(x_{j} t \mid x_{0} ; 0\right)+\ldots\right] d x_{1} \ldots d x_{n}
\end{aligned}
$$

where, at the end, we have written \boldsymbol{x} instead of y.

Integration by parts now renders, for the complete equation,

$$
\begin{aligned}
& \int \ldots \int R(x)\left\{p\left(x ; t+\tau \mid x_{0} ; 0\right)-p\left(x_{;} t \mid x_{0} ; 0\right)+\sum_{i} \frac{\partial}{\partial x_{i}}\left[a_{i} p\left(x ; t \mid x_{0} ; 0\right)\right]-\right. \\
& \left.-\frac{1}{2} \sum_{i} \sum_{j} \frac{\partial^{2}}{\partial x_{i}} \frac{\partial x_{j}}{}\left[b_{i j} p\left(x ; t \mid x_{0} ; 0\right)\right]+\ldots\right\} d x_{1} \ldots d x_{n}=0
\end{aligned}
$$

Since $R(\boldsymbol{x})$ is arbitrary the integrand must vanish. If, in addition, we divide by $\boldsymbol{\tau}$ and go to the limit $\tau \rightarrow 0$ we obtain the Fokker - Planck equation for the transition probability $p\left(x_{;} t \mid x_{0} ; 0\right)$

$$
\begin{equation*}
\frac{\partial p}{\partial t}+\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\alpha_{i} p\right)-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left(\beta_{i j} p\right)=0 \tag{9.9}
\end{equation*}
$$

with the corresponding initial condition

$$
\begin{equation*}
p\left(x ; 0 \mid x_{0} ; 0\right)=\delta\left(x-x_{0}\right) \tag{9.10}
\end{equation*}
$$

Coefficients α_{i} and $\beta_{i j}$ are defined by

$$
\left.\begin{array}{rl}
\alpha_{i}(x, t) & =\lim _{\tau \rightarrow 0} \frac{1}{\tau} \int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty}\left(y_{i}-x_{i}\right) p(y ; t+\tau \mid x ; t) d y_{1} \ldots d y_{n} \\
\beta_{i j}(x, t) & =\lim _{\tau \rightarrow 0} \frac{1}{\tau} \int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty}\left(y_{i}-x_{i}\right)\left(y_{j}-x_{j}\right) p(y ; t+\tau \mid x ; t) d y_{1} \ldots d y_{n} \tag{9.11}
\end{array}\right\}
$$

assuming that all limits exist and that all higher terms in the Taylor series vanish for $\tau \rightarrow 0$, i.e., for $y \rightarrow \boldsymbol{x}$, of order $0\left(\tau^{2}\right)$.

Coefficients (9.11) may be written as condi tional expectations. Upon putting

$$
\begin{equation*}
y_{i}-x_{i}=\Delta x_{i}=\int_{t}^{t+\tau} \dot{x}_{i}(\lambda) d \lambda \tag{9.12}
\end{equation*}
$$

we have

$$
\left.\begin{array}{l}
\alpha_{i}(\boldsymbol{x}, t)=\lim _{\tau \rightarrow 0} E\left\{\left.\frac{\Delta x_{i}}{\tau} \right\rvert\, \boldsymbol{x}(t)\right\} \tag{9.13}\\
\boldsymbol{\beta}_{i j}(\boldsymbol{x}, t)=\lim _{\tau \rightarrow 0} E\left\{\left.\frac{\Delta \boldsymbol{x}_{i} \Delta \boldsymbol{x}_{j}}{\tau} \right\rvert\, \boldsymbol{x}(t)\right\}
\end{array}\right\}
$$

Let the random process $\boldsymbol{x}(\mathrm{t})$ now be given by the following system of n first-order differen ial equations:

$$
\begin{equation*}
\dot{x}_{i}=f_{i}\left(x_{1}, \ldots x_{n}, t\right)+\sum_{j=1}^{m} h_{i j}\left(x_{1}, \ldots x_{n}, t\right) w_{j}(t) \tag{9.14}
\end{equation*}
$$

where f_{i} and $h_{i j}$ are given functions of the random variable \boldsymbol{x} and of time t, and $\boldsymbol{w}_{i}(t)$ represents white
noise with zero mean and correlation functions

$$
\begin{equation*}
R_{i j}(t, s)=E\left\{w_{i}(t) w_{j}(s)\right\}=2 D_{i j} \delta(t-s) \tag{9.15}
\end{equation*}
$$

Using (9.14) one has from (9.12) for $\boldsymbol{r} \rightarrow 0$

$$
\Delta x_{i}=\tau f_{i}\left(x_{1} \ldots x_{n}, t\right)+\sum_{j=1}^{m} \int_{t}^{t+\tau} h_{i j}\left(x_{1} \ldots x_{n}, \lambda\right) w_{j}(\lambda) d \lambda
$$

Therefore, and because of

$$
E\{f(x, t) \mid x(t)\}=f(x, t)
$$

it follows from Eq. (9.13)

$$
\begin{aligned}
& \alpha_{i}=\lim _{\tau \rightarrow 0}\left[f_{i}(x, t)+\sum_{j=1}^{m} h_{i j}(x, t) \frac{1}{\tau} \int_{t}^{t+\tau} E\left\{w_{j}(\lambda)\right\} d \lambda\right]=f_{i}(x, t) \\
& \beta_{i j}=\lim _{\tau \rightarrow 0}\left[\tau f_{i} f_{j}+f_{i} \sum_{k} h_{i k} \int_{t}^{t+\tau} E\left\{w_{k}(\lambda)\right\} d \lambda+\right. \\
& \left.+f_{j} \sum_{r} h_{j r} \int_{t}^{t+\tau} E\left\{w_{r}(\lambda)\right\} d \lambda+\sum_{k} \sum_{r} h_{i k} h_{j r} \frac{1}{\tau} \int_{t}^{t+\tau} d \mu \int_{t}^{t+\tau} E\left\{w_{k}(\lambda) w_{r}(\mu)\right\} d \lambda\right]= \\
& =2 \sum_{r} \sum_{k} h_{i k} h_{j r} D_{k \cdot r} \underbrace{\lim _{t \rightarrow 0} \frac{1}{\tau} \int_{t}^{t+\tau} d \mu \int_{t}^{t+\tau} \delta(\lambda-\mu) d \lambda=2 \sum_{r} \sum_{k} D_{k r} h_{i k} h_{j r}}_{\tau \rightarrow 0}
\end{aligned}
$$

The Fokker - Planck equation (9.9) then goes over into

$$
\begin{equation*}
\frac{\partial p}{\partial t}=-\sum_{i} \frac{\partial}{\partial x_{i}}\left(f_{i} p\right)+\sum_{k} \sum_{r} D_{k r} \sum_{i} \sum_{j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left(h_{i k} h_{j r} p\right) \tag{9.16}
\end{equation*}
$$

with initial condition

$$
\begin{equation*}
p\left(x_{1}, \ldots x_{n} ; 0 \mid x_{1}^{0}, \ldots x_{n}^{0} ; 0\right)=\delta\left(x_{1}-x_{1}^{0}\right) \ldots \delta\left(x_{n}-x_{n}^{0}\right) \tag{9.17}
\end{equation*}
$$

For the frequently occurring special case where the system (9.14) is of the form

$$
\left.\begin{array}{l}
\dot{x}_{1}=f_{1}+h_{11} w \tag{9.14a}\\
\dot{x}_{2}=f_{2}+h_{21} w \\
\dot{x}_{3}=f_{3}+h_{31} w
\end{array}\right\}
$$

with

$$
\begin{equation*}
R=2 D \delta(t-s) \tag{9.15a}
\end{equation*}
$$

instead of (9.15), the Fokker - Planck equation (9.16) reads

$$
\begin{align*}
& \frac{\partial p}{\partial t}=-\frac{\partial}{\partial x_{1}}\left(f_{1} p\right)-\frac{\partial}{\partial x_{2}}\left(f_{2} p\right)-\frac{\partial}{\partial x_{3}}\left(f_{3} p\right)+ \\
& +D \sum_{i=1}^{3} \frac{\partial}{\partial x_{i}}\left[\frac{\partial}{\partial x_{1}}\left(h_{i 1} h_{11} p\right)+\frac{\partial}{\partial x_{2}}\left(h_{i 1} h_{21} p\right)+\frac{\partial}{\partial x_{3}}\left(h_{i 1} h_{31} p\right)\right] \tag{9.16a}
\end{align*}
$$

The derivation of the Fokker-Planck equa tion given above is purely formal, as is Eq. (9.14). Indeed, since the right-hand side of this equation contains white noise \dot{x}_{i} does not exist: the process is not differentiable. Nevertheless, the equations can be used formally as may be seen employing the Wiener process as an example. Writing Eq. (7.5) formally as

$$
\begin{equation*}
\dot{x}=w(t) \tag{9.18}
\end{equation*}
$$

one obtains from (9.16) the correct Eq. (7.6) derived by an entirely different procedure.

The exact derivation of Eq. (9.16) would involve so-called Ito integrals (also known as stoch astic integrals) whose properties are basically different from those of ordinary integrals which, if they contain the differential $d \boldsymbol{w}(\mathrm{t})$ of white noise, simply do not exist. However, as has been pointed out already on p 54, random processes appearing in practical applications are always differentiable. Pathological functions like white noise are physical ly not realizable. Only processes $z_{i}(t)$ with a relative 1y wide frequency band are possible. Therefore, as has been pointed out by Caughey and Gray [12], it
seems more reasonable to employ ordinary integrals rather than Ito integrals, and to replace Eq. (9.16) by the following slightly different equation called "physical" Fokker-Planck equation

$$
\begin{equation*}
\frac{\partial p}{\partial t}=-\sum_{i} \frac{\partial}{\partial x_{i}}\left(f_{i} p\right)+\sum_{k} \sum_{r} D_{k r} \sum_{i} \sum_{j} \frac{\partial}{\partial x_{i}}\left[h_{i k} \frac{\partial}{\partial x_{j}}\left(h_{j r} p\right)\right] \tag{9.19}
\end{equation*}
$$

The coefficients of intensity $D_{i j}$ are to be determined from

$$
\begin{equation*}
2 D_{i j}=\int_{-\infty}^{+\infty} E\left\{z_{i}(t) z_{j}(t+\tau)\right\} d \tau \tag{9.20}
\end{equation*}
$$

Finally, it should be remarked that a Fokker-Planck equation may also be set up for discrete processes $\boldsymbol{x}(\mathrm{t})$ which can take on only the valu $a_{0}, a_{1} \ldots a_{n} \cdots,[4], p .543$. We give here the resu Employing, as in Eqs. (9.13), the notation

$$
P\left[x(t)=a_{i} \mid x(\tau)=a_{j}\right]=p_{i j}(t, \tau)
$$

then

$$
\begin{equation*}
\sum_{i} p_{i j}(t, r)=1, \quad p_{i j}(\tau, r)=\delta_{i j} \tag{9.22}
\end{equation*}
$$

and one obtains the Fokker-Planck equation

$$
\begin{equation*}
\frac{\partial p_{i j}}{\partial t}=-q_{i}(t) p_{i j}+\sum_{k \neq i} q_{i k}(t) p_{k j} \tag{9.23}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
P\left[x(t+s)=a_{i} \mid x(t)=a_{j}\right]=q_{i j}(t) s \quad(i \neq j) \\
p\left[x(t+s)=a_{i} \mid x(t)=a_{i}\right]=1-q_{i}(t) s
\end{array}\right\} \text { for } s \rightarrow 0
$$

Hence

$$
\begin{equation*}
q_{i}(t)=\sum_{j \neq i} q_{j i}(t) \tag{9.25}
\end{equation*}
$$

As an example, consider the Poisson
process. Here $a_{n}=n$, and one notes that $x(t)$ can only increase, at most by 1 in the time interval $s \rightarrow 0$. Therefore, comparing Eqs. (6.1) with (9.24) it follows that

$$
q_{i}(t)=q_{i, i-1}(t)=v
$$

with all other zero. The Fokker-Planck equation (9.23) reads therefore, with $p_{i 0}(t, 0) \equiv p_{i}(t)$,

$$
\frac{d p_{i}}{d t}=-v p_{i}+v p_{i-1}
$$

Literature .

[1] A.N. Kolmogorov: Ueber die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104 (1931), p. 415.
[2] A.N. Kolmogorov: Grundbegriffe der Wahrscheinlich keitsrechnung. Ergeb. Math. und ihrer Grenzgeb. Bd.2, No.3, 1933.
[3] R. von Mises: Wahrscheinlichkeitsrechnung. Deuticke. Wien 1931.
[4] A. Papoulis: Probability, Random Variables and Stochastic Processes. McGraw-Hill Book Comp. New York 1965 .
[5] E. Parzen: Modern Probability Theory and its Applications. Wiley. New York 1960 .
[6] E. Parzen: Stochastic Processes. Holden-Day. San Francisco 1962.
[7] J. Heinhold und K. - W. Gaede: Ingenieur-Statistik. O1denbourg-Verlag. München-Wien 1964 .
[8] A.A. Sweschnikow: Untersuchungsmethoden der Theorin der Zufallsfunktionen. Teubner. Leipzig 1965.
[9] W.Eberl: Einführung in die Stochastik. I. Teal, Wahrscheinlichkeitstheorie. Wiener Schwachstromwerke, Wien 1965.
[10] M.F.M. Osborne: Reply to comments on Brownian motion in the stock market. Oper. Research 7 (1959), 807-811.
[11] E. Wax (editor): Selected Papers on Noise and Stochastic Processes. Dover Publications. New York 1954.
[12] A.H. Gray and T.K. Caughey: A controversy in prob lems involving random parametric excitation. J. Math. Phys. 44 (1965),288.
C H A P T E R II

LINEAR RANDOM VIBRATIONS .

The following treatement will be restrictive in the sense of correlation theory.

1. The Oscillator with One Degree of Freedom under

Stochastic Excitation .

This is the simplest case. The corresponding differential equation reads

$$
\begin{equation*}
\ddot{y}+2 \zeta \omega_{0} \dot{y}+\omega_{0}^{2} y=x(t) H(t) \tag{1.1}
\end{equation*}
$$

where $\boldsymbol{x}(\mathrm{t})$ is a stationary random driving function with mean $m_{x}(t)=0 \quad$.

For the admittance one has at once

$$
\begin{equation*}
F(\omega)=\frac{1}{\omega_{0}^{2}-\omega^{2}+2 i \xi \omega_{0} \omega} \tag{1.2}
\end{equation*}
$$

and for the impulse response

$$
\begin{equation*}
h(t)=\frac{1}{\omega_{0} \sqrt{1-\xi^{2}}} e^{-\xi \omega_{0} t} \sin \left(\omega_{0} \sqrt{1-\zeta^{2}} t\right) \tag{1.3}
\end{equation*}
$$

Eq. (I-5.30) renders $m_{y}=0$ for the expectation of $y(t)$. The spectral density of the stationary solu
tion is, from Eq. (I - 5.38),

$$
\begin{equation*}
S_{y y}(\omega)=\frac{S_{x x}(\omega)}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \xi^{2} \omega_{0}^{2} \omega^{2}} \tag{1.4}
\end{equation*}
$$

and the corresponding autocorrelation is, according to (I-5.17),

$$
\begin{equation*}
R_{y y}(\tau)=\frac{1}{\pi} \int_{0}^{+\infty} \frac{S_{x x}(\omega)}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \xi^{2} \omega_{0}^{2} \omega^{2}} \cos \omega \tau d \omega \tag{1.5}
\end{equation*}
$$

We consider the special case of white noise excitation, $\boldsymbol{x}(\mathrm{t})=\mathrm{A} \boldsymbol{w}(\mathrm{t})$. From the table on p. 52 we have $S_{x x}(\omega)=A^{2}$. If this is substituted into (1.5) we obtain, after integration,

$$
\begin{equation*}
R_{y y}(\tau)=A^{2} \frac{e^{-\xi \omega_{0} \tau}}{4 \xi \omega_{0}^{3}}\left[\cos \left(\omega_{0} \sqrt{1-\xi^{2}} \tau\right)+\frac{\xi}{\sqrt{1-\xi^{2}}} \sin \omega_{0} \sqrt{1-\xi^{2}} \tau\right] \tag{1.6}
\end{equation*}
$$

whence, for $\tau=0$

$$
\begin{equation*}
\sigma_{y}^{2}=\frac{A^{2}}{4 \zeta \omega_{0}^{3}} \tag{1.7}
\end{equation*}
$$

During the transient state, $t<\infty, y(t)$ is a nonstationary random function. Its autocorrelation follows from Eq. ($\mathrm{I}-5.32$) upon substitution of $R_{x x}(t)=A^{2} \boldsymbol{\delta}(t)$.

Assuming $t \geqslant s$ we have

$$
\begin{aligned}
& R_{y y}(t, s)=A^{2} \int_{0}^{t} \int_{0}^{s} h(t-\tau) h(s-\lambda) \delta(\lambda-\tau) d \lambda d \tau= \\
& \quad=A^{2} \int_{0}^{t} h(t-\tau) h(s-\tau) d \tau
\end{aligned}
$$

$$
\begin{aligned}
R_{y y}(t, s) & =\frac{A^{2} e^{-\xi \omega_{0} t}}{4 \omega_{0}}\left\{\frac{e^{+\xi \omega_{0} s}}{\xi \omega_{0}^{2}}\left[\cos \left(\omega_{0} \sqrt{1-\xi^{2}}(t-s)\right)+\frac{\xi}{\sqrt{1-\zeta^{2}}} \sin \left(\omega_{0} \sqrt{1-\xi^{2}}(t-s)\right)\right]+\right. \\
& +\frac{e^{-\xi \omega_{0} s}}{\omega_{0}^{2}\left(1-\xi^{2}\right)}\left[\zeta \cos \left(\omega_{0} \sqrt{1-\zeta^{2}}(t+s)\right)-\sqrt{1-\xi^{2}} \sin \left(\omega_{0} \sqrt{1-\zeta^{2}}(t+s)\right)-\right.
\end{aligned}
$$

$$
\begin{equation*}
\left.\left.-\frac{1}{\xi} \cos \left(\omega_{0} \sqrt{1-\xi^{2}}(t-s)\right)\right]\right\} \tag{1.8}
\end{equation*}
$$

This renders for the variance

$$
\begin{equation*}
\sigma_{y}^{2}(t)=\frac{A^{2}}{4 \xi \omega_{0}^{3}}+\frac{A^{2} e^{-2 \xi \omega_{0} t}}{4 \omega_{0}^{3}\left(1-\xi^{2}\right)}\left[\zeta \cos \left(2 \omega_{0} \sqrt{1-\xi^{2}} t\right)-\sqrt{1-\xi^{2}} \sin \left(2 \omega_{0} \sqrt{1-\xi^{2}} t\right)-\frac{1}{\xi}\right] \tag{1.9}
\end{equation*}
$$

which, for $t \rightarrow \infty$, goes over into (1.7).
White noise represents the extreme case of a pure random function. It fluctuates with infinitely large amplitude infinitely often in each finite time--interval, thus producing an extremely violent excita tion of the oscillator. It is, therefore, not surpris
ing that oscillations can be kept within limits by strong damping on dy. We note from (1.7) and (1.9), putting $\zeta=0$, that the variance of the undamped osci1 later grows beyond all limits as $t \rightarrow \infty$.

If the input $x(t)$ is normally distributed the output $y(t)$ is normal. In that case the p. -density of $y(t)$ is completely determined by $m_{y}(t)$ and $R_{y y}(t, s)$, cf. Eq. (I-2.35).

2. System with n Degrees of Freedom -

We consider a holonomic system of n degrees of freedom, with corresponding generalized co ordinates $q_{i}(t)$. Let $q_{i}=0$ in the equilibrium pos lion.

It is convenient, by introducing the co
ordinates

$$
\left.\begin{array}{ll}
y_{i}=q_{i} & (i=1,2, \ldots n) \tag{2.1}\\
y_{i}=\dot{q}_{i-n} & (i=n+1, \ldots 2 n)
\end{array}\right\}
$$

to transform the Lagrangian equations of motion into the form

$$
\begin{equation*}
\dot{y}(t)=P y(t)+f(t) \tag{2.2}
\end{equation*}
$$

where $y=\left(y_{1}, y_{2} \ldots y_{2 n}\right), P$ is a $2 n x 2 n$ coefficient matrix, and $f(t)$ represents the vector $\left(0,0 \ldots 0, Q_{1}(t), Q_{2}(t) \ldots Q_{n}(t)\right)$ of the driving forces. We suppose that P is nonsingular and that its $2 n$ eigenvalues are different, with negative real part. Equilibrium $y_{i}=0$ is, therefore, stable.

Let the principal-axes-transformation of (2.2) be given by the nonsingular $2 n \mathrm{n} 2 \mathrm{n}$ matrix T

$$
\begin{equation*}
T^{-1} P T=D=\operatorname{Diag}\left(\varrho_{1}, \ldots \varrho_{2 n}\right) \tag{2.3}
\end{equation*}
$$

where $\varrho_{1} \ldots \varrho_{2 n}$ are the eigenvalues of P. Putting

$$
\begin{equation*}
y(t)=T_{z}(t) \quad \text { or } \quad y_{i}(t)=T_{i j} z_{j}(t) \tag{2.4}
\end{equation*}
$$

Eq. (2.2), after multiplication from the left by T^{-1}, goes over into

$$
\begin{equation*}
\dot{z}(t)=D z(t)+x(t) \tag{2.5}
\end{equation*}
$$

where $x(t)=T^{-1} f(t)$, or $x_{i}(t)=T_{i j}^{-1} f_{j}(t)$
The solution of (2.5) corresponding to $z_{i}(0)=0$ is given by
with

$$
\left.\begin{array}{l}
z(t)=\int_{0}^{t} H(t-\tau) x(\tau) d \tau \tag{2.6}\\
H(t)=e^{D t}=\operatorname{Diag}\left(e^{e_{1} t}, \ldots e^{e_{2 n} t}\right)
\end{array}\right\}
$$

We have, therefore,

$$
\begin{equation*}
z_{i}(t)=\int_{0}^{t} e^{e_{i}(t-\tau)} x_{i}(\tau) d \tau \tag{2.7}
\end{equation*}
$$

Analysis now continues as in the case of one degree of freedom. It is only necessary to determine che correlation functions of the $\boldsymbol{x}_{i}(t)$ from those of the $f_{i}(t)$ or $Q_{i-n}(t)$. One easily finds the following equation for correlation and spectral density of a sum $u(t)=x(t)+y(t)^{*)}$:

$$
\begin{equation*}
R_{u u}(\tau)=R_{x x}(\tau)+R_{y y}(\tau)+R_{x y}(\tau)+R_{y x}(\tau) \tag{2.8}
\end{equation*}
$$

The same is true for the spectral densities. If the processes \boldsymbol{x} and y are orthogonal, $R_{x y}=R_{y x}=0$ and $S_{x y}=S_{y x}=0$.
*) For a sum of n variables $u(t)=\sum_{i=1} x_{i}(t)$ the analogous relation holds

$$
\begin{equation*}
R_{u u}(\tau)=\sum_{i=1}^{n} \sum_{j=1}^{n} R_{i j}(\tau) \tag{2.9}
\end{equation*}
$$

3. Continuous Systems -

$$
B e n d i n g \quad o f \quad a \quad B e a m
$$

With the aid of the Ritz method a continuous system may always be reduced approximately to one with a finite number of degrees of freedom. Choosing for the corresponding functions in the Ritz series the eigenfunctions, kinematic and dynamic boundary conditions are automatically satisfied and one can be sure to get arbitrarily close to the exact solution by increasing the number of terms.

As an example we consider the beam on two supports, Fig. 2.1,

Fig. 2.1 under the action of a load $\quad q(x, t)$, distrib uted randomly with respect to space and time. The material of the beam is assumed to possess internal damping follow ing the Voigt-Kelvin
constitutive equation of viscoelasticity. After inte gration over the cross-section of the beam this law may be written as a linear relation between bending moment M and rotation φ of the cross-section [1]

$$
\begin{equation*}
M=-E J\left(1+\varepsilon \frac{\partial}{\partial t}\right) \frac{\partial \varphi}{\partial x} \tag{3.1}
\end{equation*}
$$

where ε is the damping coefficient, of dimension of time t. If the Bernoulli-Euler model is used for the beam,i.e., if the influence of shearing forces and rotatory inertia is neglected, then $\varphi=\partial w / \partial x$, where $\boldsymbol{w}(\boldsymbol{x}, \mathrm{t})$ represents deflection, and one obtains, substituting M from the 1 aw of angular momentum

$$
\frac{\partial^{2} M}{\partial x^{2}}=\rho F \frac{\partial^{2} w}{\partial t^{2}}-q
$$

the following equation of the viscous beam

$$
\begin{equation*}
c^{2}\left(1+\varepsilon \frac{\partial}{\partial t}\right) \frac{\partial^{4} w}{\partial x^{4}}+\frac{\partial^{2} w}{\partial t^{2}}=\frac{q}{\varrho F}, \quad c^{2}=\frac{E J}{\varrho F} \tag{3.2}
\end{equation*}
$$

The eigenfunctions will be determined first. Putting, for the $n-t h e i g e n f u n c t i o n$,

$$
\begin{equation*}
w_{n}^{e}=A_{n} e^{\beta_{n} t} \sin \lambda_{n} x \quad, \quad \lambda_{n}=\frac{n \pi}{l} \tag{3.3}
\end{equation*}
$$

boundary conditions are satisfied, and one obtains from (3.2), with $q \equiv 0$, the following frequency equa. tion

$$
\begin{equation*}
\beta_{n}^{2}+\varepsilon c^{2} \lambda_{n}^{4} \beta_{n}+c^{2} \lambda_{n}^{4}=0 \tag{3.4}
\end{equation*}
$$

Separating into real and imaginary parts

$$
\begin{equation*}
\beta_{n}=\alpha_{n}+i \omega_{n}, \tag{3.5}
\end{equation*}
$$

one gets

$$
\begin{equation*}
\alpha_{n}=-\frac{\varepsilon c^{2}}{2} \lambda_{n}^{4}, \quad \omega_{n}=c^{2} \lambda_{n}^{4}\left(1-\frac{\varepsilon^{2} c^{2}}{4} \lambda_{n}^{4}\right) \tag{3.6}
\end{equation*}
$$

Admittances for $w(x, t)$ and $M(x, t)$ may now be determined. Putting

$$
\left.\begin{array}{rl}
q(x, t)=e^{i \omega t} \sin \lambda_{n} x, & w_{n}^{p}(x, t)=F_{n}(\omega) e^{i \omega t} \sin \lambda_{n} x \tag{3.7}\\
M_{n}^{p}(x, t)=G_{n}(\omega) e^{i \omega t} \sin \lambda_{n} x
\end{array}\right\}
$$

we find, upon substitution into (3.2),

$$
\left.\begin{array}{c}
F_{n}(\omega)=\frac{1}{e F D(\omega)}, G_{n}(\omega)=-\frac{1+i \omega \varepsilon}{D(\omega)} c^{2} \lambda_{n}^{2} \tag{3.8}\\
D(\omega)=-\omega^{2}+i \varepsilon c^{2} \lambda_{n}^{4} \omega+c^{2} \lambda_{n}^{4}
\end{array}\right\}
$$

Now we concentrate on the study of the random vibrations. We first expand $q(x, t)$ in terms of the eigenfunction*)

$$
\begin{equation*}
q(x, t)=\sum_{n=1}^{\infty} q_{n}(t) \sin \lambda_{n} x \tag{3.9}
\end{equation*}
$$

where

$$
\begin{equation*}
q_{n}(t)=\frac{2}{l} \int_{0}^{\ell} q(x, t) \sin \lambda_{n} x d x \tag{3.10}
\end{equation*}
$$

For each component $w_{n}(\boldsymbol{x}, \mathrm{t})_{\mathrm{I}} \mathrm{Eq} .(\mathrm{I}-5.20)$ holds*). Summing
$u(x, t)=\sum_{n=1}^{\infty} w_{n}(x, t)=\sum_{n=1}^{\infty} \sin \lambda_{n} x \int_{-\infty}^{+\infty} h_{n}(t-\tau) q_{n}(\tau) d \tau$

Substitution of (3.10) renders
$w(x, t)=\frac{2}{\ell} \sum_{n=1}^{\infty} \sin \lambda_{n} x \int_{-\infty}^{+\infty} h_{n}(t-\tau) \int_{0}^{\ell} q(\xi, \tau) \sin \lambda_{n} \xi d \xi d \tau$
For simplicity, we assume that $E\{q(x, t)\}=0$. Then $E\{w(x, t)\}=0$, and we get for the correlation function of $w, ~ c f .(I-5.32)$,

$$
\begin{align*}
& E\left\{w\left(x_{1}, t\right) \cdot w\left(x_{2}, s\right)\right\}=\frac{4}{l^{2}} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sin \lambda_{n} x_{1} \sin \lambda_{m} x_{2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} h_{n}(t-\tau) h_{m}(s-\mu) . \\
& {\left[\int_{0}^{\ell} \int_{0}^{\ell} E\{q(\xi, \tau) q(\eta, \mu)\} \sin \lambda_{n} \xi \sin \lambda_{m} \eta d \xi d \eta\right] d \tau d \mu \quad \text { (3.13) }} \tag{3.13}
\end{align*}
$$

*) We restrict our attention to stationary motion!

This completes the solution of the problem, at least in principle, in the sense of correlation theory. The actual evaluation of (3.13) for a given correlation function $E\{q(\xi, \tau) \cdot q(\eta, \mu)\}$ will, in general, present considerable numerical difficulties.

The problem is simplified drastically if one assumes that the load is not correlated spacewise,

$$
\begin{equation*}
E\{q(\xi, \tau) q(\eta, \mu)\}=\frac{l}{2} R(\tau-\mu) \delta(\xi-\eta) \tag{3.14}
\end{equation*}
$$

The second of the two double - integrals may then be evaluated in closed form. As a consequence of the orthogonality of the circular functions it vanishes for $m \neq n$, and the double sum reduces to a simple sum. Putting, in addition, $\tau=t-u, \mu=s-v$, we get
$E\left\{w\left(x_{1}, t+\tau\right) w\left(x_{2}, t\right)\right\}=\sum_{n=1}^{\infty} \sin \lambda_{n} x_{1} \sin \lambda_{n} x_{2} \int_{-\infty}^{+\infty} d v\left[\int_{-\infty}^{+\infty} h_{n}(u) h_{n}(v) R(\tau+v-u) d u\right]$
$=\sum_{n=1}^{\infty} \sin \lambda_{n} x_{1} \sin \lambda_{n} x_{2} R_{n}(\tau)=\frac{1}{\pi} \sum_{n=1}^{\infty} \sin \lambda_{n} x_{1} \sin \lambda_{n} x_{2} \int_{0}^{\infty} S_{n}(\omega) \cos \omega \tau d \omega$

As was to be expected, the correlation function of w depends on τ but not on t. According to

Eq. (I-5.32), the function $R_{n}(\tau)$ is the time-part of the correlation function of $w_{n}(x, t)$. The latter is connected with the corresponding spectral density $S_{n}(\boldsymbol{\omega})$ through Eq. (I-5.17).

A similar expression may be given for the correlation function of the bending moment $M(x, t)$.

The spectral density $S_{n}(\boldsymbol{\omega})$ is connect ed with the spectral density of the excitation via Eq. (I-5.38). One has, therefore, finally,

$$
\begin{equation*}
E\left\{w\left(x_{1}, t+\tau\right), w\left(x_{2}, t\right)\right\}=\sum_{n=1}^{\infty} \sin \lambda_{n} x_{1} \sin \lambda_{n} x_{2} \int_{0}^{\infty} S(\omega)\left|F_{n}(\omega)\right|^{2} \cos \omega \tau d \omega \tag{3.16}
\end{equation*}
$$

where $S(\boldsymbol{\omega})$ is the excitation spectral density, corresponding to $R(t)$.

An identical expression is obtained for the bending moment, with $G_{n}(\boldsymbol{\omega})$ replacing $F_{n}(\boldsymbol{\omega})$.

The integral in (3.16) can only be eval uated (in general numerically) if $5(\omega)$ is given. The evaluation is possible in closed form in the extreme case of white noise excitation. It turns out, however that the variance of the bending moment then becomes infinite, while the variance of the deflection remains finite. If, on the other hand, shearing stiffness and rotatory inertia are taken into account (Timoshenko beam), both variance of deflection and variance of bending moment remain finite [1].

Literature .

$[1]$ S.H. Crandall and A. Yildiz: Random vibration of beams. J. Appl. Mech. 29 (1962), 267.
[2] W.E. Boyce: Stochastic nonhomogeneous Sturm--Liouville problems. J. Franklin Inst. 282 (1966), 206.

$$
\mathrm{C} H \mathrm{~A} P \mathrm{~T} E \mathrm{R} \text { III }
$$

NON-LINEAR RANDOM VIBRATIONS .

> Exact solutions are, in general, not available. For finding approximate solutions the same methods as in the deterministic case are being used. We discuss some examples.

1. Oscillator with Nonlinear Restoring Force .

Let the corresponding differential equa tion be given as

$$
\begin{equation*}
\ddot{y}+\alpha \dot{y}+F(y)=x(t) H(t) \tag{1.1}
\end{equation*}
$$

Assuming $\boldsymbol{x}(t)$ to represent white noise with zero mear we have $y(t)$ a nonstationary Markov process with Fokker-Planck equation (I-9.16) which, in the present case, is identical with (I-9.19),

$$
\begin{equation*}
\frac{\partial p}{\partial t}=\frac{\partial}{\partial \dot{y}}[(F(y)+\alpha \dot{y}) p]-\frac{\partial}{\partial y}(\dot{y} p)+D \frac{\partial^{2} p}{\partial \dot{y}^{2}} \tag{1.2}
\end{equation*}
$$

for the transition probability $p\left(y, \dot{y} ; t \mid y_{0}, \dot{y}_{0} ; 0\right)$. The autocorrelation of $x(t)$ is

$$
\begin{equation*}
R_{x}(\tau)=2 D \delta(\tau) \tag{1.3}
\end{equation*}
$$

The general solution of equation (1.2) is not known, at least not in closed form. However, y (t) becomes stationary for $t \rightarrow \infty$. Putting, $\partial p / \partial t=0$ the solution of (1.2) is then [1]

$$
\begin{equation*}
p(y, \dot{y})=C \exp \left\{-\frac{\alpha}{D}\left[\frac{\dot{y}^{2}}{2}+V(y)\right]\right\} \tag{1.4}
\end{equation*}
$$

where C is a normalizing constant, and

$$
\begin{equation*}
V(y)=\int_{0}^{y} F(\eta) d \eta \tag{1.5}
\end{equation*}
$$

represents the potential of the restoring force F.
The expression. within the brackets in Eq. (1.4) is the sum of kinetic and potential energy per unit mass. We note that $p(y, \dot{y})$ is Gaussian in \dot{y}. Also, since

$$
p(y, \dot{y})=p(y) p(\dot{y})
$$

$y(t)$ and $\dot{y}(t)$ are independent.
For the stationary expectation of $y(t)$ one has

$$
E\{y(t)\}=C \int_{-\infty}^{+\infty} e^{-\frac{\alpha}{2 D} \dot{y}^{2}} d \dot{y} \int_{-\infty}^{+\infty} y \exp \left\{-\frac{\alpha}{D} V(y)\right\} d y
$$

and, upon integration,

$$
\begin{equation*}
E\{y(t)\}=C \sqrt{2 \pi \frac{D}{\alpha}} \int_{-\infty}^{+\infty} y \exp \left\{-\frac{\alpha}{D} V(y)\right\} d y=m_{y} \tag{1.6}
\end{equation*}
$$

If $V(y)$ is an even function $E\{(t)\}$ vanishes.
Similarly, for the variance

$$
\begin{equation*}
\sigma_{y}^{2}=C \sqrt{2 \pi \frac{D}{\alpha}} \int_{-\infty}^{+\infty} y^{2} \exp \left\{-\frac{\alpha}{D} V(y)\right\} d y-m_{y}^{2} \tag{1.7}
\end{equation*}
$$

The preceding analysis may be immediately generalized to a system with n degrees of freedom:

$$
\begin{equation*}
\ddot{y}_{i}+\alpha_{i} \dot{y}_{i}+\frac{1}{m_{i}} \frac{\partial V}{\partial y_{i}}=x_{i}(t) \quad(i=1,2 \ldots n) \tag{1.8}
\end{equation*}
$$

The stationary Fokker-Planck equation now reads

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{\partial}{\partial \dot{y}_{i}}\left[\left(\frac{1}{m_{i}} \frac{\partial V}{\partial y_{i}}+\alpha_{i} \dot{y}_{i}\right) p\right]-\sum_{i=1}^{n} \frac{\partial}{\partial y_{i}}\left(\dot{y}_{i} p\right)+\sum_{i=1}^{n} D_{i} \frac{\partial^{2} p}{\partial \dot{y}_{i}^{2}}=0 \tag{1.9}
\end{equation*}
$$

where
$\left\langle x_{i}(t)\right\rangle=0,\left\langle x_{i}(t) x_{i}(t+\tau)\right\rangle=2 D_{i} \delta(\tau),\left\langle x_{i}(t) x_{j}(t+\tau)\right\rangle=0$ for $i \neq j$ has been assumed. Eq. (1.9) has the solution

$$
\begin{equation*}
p\left(y_{1}, \ldots y_{n}, \dot{y}_{1} \ldots \dot{y}_{n}\right)=c \exp \left\{-\frac{1}{k}\left(\frac{1}{2} \Sigma m_{i} \dot{y}_{i}^{2}+V\right)\right\} \tag{1.10}
\end{equation*}
$$

provided

$$
\frac{D_{i}}{\alpha_{i}} m_{i}=k
$$

With the aid of the preceding formulas a great number of the problems discussed in Chapter IV and related to material fatigue may be solved.

2. Perturbation Method.

The method [2] is applied exactly as in the deterministic case. Let the differential equation be

$$
\begin{equation*}
\ddot{x}+2 \xi \omega_{0} \dot{x}+\omega_{0}^{2}[x+\varepsilon g(x)]=f(t) \tag{2.1}
\end{equation*}
$$

and let the nonlinear part $\varepsilon g(x)$ be small*). ε is a smallness parameter. We expand the solution in powers of $\boldsymbol{\varepsilon}$

$$
\begin{equation*}
x(t)=x_{0}(t)+\varepsilon x_{1}(t)+\varepsilon^{2} x_{2}(t)+\ldots \tag{2.2}
\end{equation*}
$$

substitute, and equate the coefficients of $\boldsymbol{\varepsilon}^{n}$ to zero. We obtain then the following recursive chain of linear differential equations
*) The same assumption has to be made if equivalent linearization is used, sec. 3 .

$$
\left.\begin{array}{l}
\ddot{x}_{0}+2 \xi \omega_{0} \dot{x}_{0}+\omega_{0}^{2} x_{0}=f(t) \tag{2.3}\\
\ddot{x}_{1}+2 \xi \omega_{0} \dot{x}_{1}+\omega_{0}^{2} x_{1}=-\omega_{0}^{2} g\left(x_{0}\right) \\
\ddot{x}_{2}+2 \xi \omega_{0} \dot{x}_{2}+\omega_{0}^{2} x_{2}=-\omega_{0}^{2} x_{1} g^{\prime}\left(x_{0}\right) \\
\ldots \ldots . ~
\end{array}\right\}
$$

differentiability of $\boldsymbol{g}(\boldsymbol{x})$ being assumed:

$$
g\left(x_{0}+\varepsilon x_{1}+\varepsilon^{2} x_{2}+\ldots\right)=g\left(x_{0}\right)+\varepsilon x_{1} g^{\prime}\left(x_{0}\right)+\ldots
$$

Employing Eq.(I-5.20) we have

$$
\begin{equation*}
x_{0}(t)=\int_{0}^{\infty} h(\tau) f(t-\tau) d \tau \tag{2.4}
\end{equation*}
$$

and

$$
\begin{gather*}
x_{1}(t)=-\omega_{0}^{2} \int_{0}^{\infty} h(\tau) g\left[x_{0}(t-\tau)\right] d \tau \tag{2.5}\\
\\
\text { and so on }
\end{gather*}
$$

where, in the present case, the impulse response of the system (2.3) is given by

$$
h(t)=\frac{\sin \omega_{0} \sqrt{1-\xi^{2}} t}{\omega_{0} \sqrt{1-\xi^{2}}} e^{-\xi \omega_{0} t}
$$

In principle, all moments of arbitrary order may now be determined. Integration difficulties soon become, however, insurmountable.

As an example, we discuss the Duffing
equation, $g(x)=x^{3}$, and restrict the solution to a first-order perturbation: $x=x_{0}+\varepsilon x_{1}$. The expectation of x^{2} is then, to this order,

$$
\begin{equation*}
\left\langle x^{2}\right\rangle=\left\langle x_{0}^{2}\right\rangle+2 \varepsilon\left\langle x_{0} x_{1}\right\rangle \tag{2.7}
\end{equation*}
$$

From (2.4), upon squaring and taking expectations,

$$
\begin{equation*}
\left\langle x_{0}^{2}\right\rangle=\int_{0}^{\infty} \int_{0}^{\infty} h\left(\tau_{1}\right) h\left(\tau_{2}\right)<f\left(t-\tau_{1}\right) f\left(t-\tau_{2}\right)>d \tau_{1} d \tau_{2} \tag{2.8}
\end{equation*}
$$

We assume $f(t)$ to be stationary. Then

$$
\begin{equation*}
\left\langle f\left(t-\tau_{1}\right) f\left(t-\tau_{2}\right)\right\rangle=R_{f}\left(\tau_{2}-\tau_{1}\right) \tag{2.9}
\end{equation*}
$$

Furthermore, from (2.5),

$$
\left.\left\langle x_{0} x_{1}\right\rangle=-\omega_{0}^{2} \int^{\infty} h(\tau)<x_{0}(t) x_{0}^{3}(t-\tau)\right\rangle d \tau
$$

and, using (2.4),

$$
\begin{equation*}
\left\langle x_{0} x_{1}\right\rangle=-\omega_{0}^{2} \int_{0}^{\infty} h(\tau) \int_{0}^{\infty} h\left(\tau_{1}\right) \int_{0}^{\infty} h\left(\tau_{2}\right) \int_{0}^{\infty} h\left(\tau_{3}\right) \int_{0}^{\infty} h\left(\tau_{4}\right) H d \tau d \tau_{1} d \tau_{2} d \tau_{3} d \tau_{4} \tag{2.10}
\end{equation*}
$$

where

$$
H=\left\langle f\left(t-\tau_{1}\right) f\left(t-\tau-\tau_{2}\right) f\left(t-\tau-\tau_{3}\right) f\left(t-\tau-\tau_{4}\right)\right\rangle
$$

The fivefold integral simplifies somewhat for $f(t)$ normal with zero expectation and autocorre1ation $R_{f}(t)$.

Then

$$
\begin{aligned}
& <f(t)>=0,<f\left(t_{1}\right) f\left(t_{2}\right)>=R_{f}\left(t_{1}-t_{2}\right) \\
& <f\left(t_{1}\right) f\left(t_{2}\right) f\left(t_{3}\right)>=0 \\
& <f\left(t_{1}\right) f\left(t_{2}\right) f\left(t_{3}\right) f\left(t_{4}\right)>=R_{f}\left(t_{1}-t_{2}\right) R_{f}\left(t_{3}-t_{4}\right)+ \\
& +R_{f}\left(t_{1}-t_{3}\right) R_{f}\left(t_{2}-t_{4}\right)+R_{f}\left(t_{1}-t_{4}\right) R_{f}\left(t_{2}-t_{3}\right)
\end{aligned}
$$

and we have

$$
\begin{align*}
H= & R_{f}\left(\tau-\tau_{1}+\tau_{2}\right) R_{f}\left(\tau_{3}-\tau_{4}\right)+R_{f}\left(\tau-\tau_{1}+\tau_{3}\right) R_{f}\left(\tau_{2}-\tau_{4}\right)+ \\
& +R_{f}\left(\tau-\tau_{1}+\tau_{4}\right) R_{f}\left(\tau_{2}-\tau_{3}\right) \tag{2.12}
\end{align*}
$$

It is expedient to first determine the autocorrelation of x_{0}

$$
\begin{equation*}
R_{0}(\tau)=\left\langle x_{0}(t) x_{0}(t+\tau)\right\rangle=\int_{0}^{\infty} \int_{0}^{\infty} h\left(\tau_{1}\right) h\left(\tau_{2}\right) R_{f}\left(\tau-\tau_{1}+\tau_{2}\right) d \tau_{1} d \tau_{2} \tag{2.13}
\end{equation*}
$$

which also renders

$$
\left\langle x_{0}^{2}\right\rangle=R_{0}(0)=\sigma_{0}^{2}
$$

Substituting now (2.12) into (2.10), interchanging the order of integration and using (2.13), one obtains

$$
\begin{equation*}
<x_{0} x_{1}>=-3 \omega_{0}^{2} \sigma_{0}^{2} \int_{0}^{\infty} h(\tau) R_{0}(\tau) d \tau \tag{2.14}
\end{equation*}
$$

Eq. (2.7) then gives

$$
\begin{equation*}
\left\langle x^{2}\right\rangle=\sigma_{0}^{2}\left[1-6 \varepsilon \omega_{0}^{2} \int_{0}^{\infty} h(\tau) R_{0}(\tau) d \tau\right] \tag{2.15}
\end{equation*}
$$

If $f(t)$ is Gaussian white noise with $R_{f}(\boldsymbol{r})=$ $=C \delta(\tau)$, one finds, after some manipulation, using Eq. (2.6),

$$
\begin{equation*}
\left\langle x^{2}\right\rangle=\sigma_{0}^{2}\left[1-3 \varepsilon \sigma_{0}^{2}\right] \tag{2.16}
\end{equation*}
$$

We note the reduction of the variance for a "hard" spring, $\varepsilon>0$.

3. Equivalent Linearization .

The method, $[3]$ and $[4]$, will be demonstrat ed using the oscillator with nonlinear restoring force as an example. The corresponding differential equation is

$$
\begin{equation*}
\ddot{x}+2 \zeta \omega_{0} \dot{x}+\omega_{0}^{2} x+g(x)=f(t) \tag{3.1}
\end{equation*}
$$

with $f(t)$ a stationary random function with zero mean.
We restrict discussion to the stationary solution and replace (3.1) by the"equivalent" linear equation

$$
\begin{equation*}
\ddot{x}+2 \xi \omega_{0} \dot{x}+\omega_{0}^{2} x+\lambda x=f(t) \tag{3.2}
\end{equation*}
$$

In the deterministic case, the function (error)

$$
F(x)=\lambda x-g(x)
$$

is "balanced" in the lowest harmonic by introducing a periodic solution and expanding $g(x)$ in a fourier series. With $f(t)$ and, hence, $\boldsymbol{x}(\mathrm{t})$ random functions this is no longer possible. Instead, we require now that the variance of the function $\boldsymbol{F}(\boldsymbol{x})$ be a minimum

$$
E\left\{F^{2}(x)\right\}=E\left\{\lambda^{2} x^{2}-2 \lambda x g(x)+g^{2}(x)\right\} \rightarrow \operatorname{Min}
$$

From

$$
\frac{\partial E\left\{F^{2}\right\}}{\partial \lambda}=0
$$

we then obtain

$$
\begin{equation*}
\lambda=\frac{E\{x g(x)\}}{E\left\{x^{2}\right\}} \tag{3.3}
\end{equation*}
$$

Neither numerator nor determinator are known in Eq. (3.3). Tc determine them in first approx imation the linearized equation (3.2) may be used. We have then

$$
\begin{equation*}
R_{x}(0)=E\left\{x^{2}\right\}=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \frac{S_{f}(\omega)}{\left|\lambda+\omega_{0}^{2}-\omega^{2}+2 i \xi \omega \omega_{0}\right|^{2}} d \omega \tag{3.4}
\end{equation*}
$$

With spectral density of the driving function $f(t)$ given, the integral may be evaluated using the calcu
lus of residues. We still need $E\{x g(x)\}$. If $f(t)$ is normally distributed, then so is x within first approximation. With $m=0$ and $E\left\{x^{2}\right\}=\sigma_{x}^{2}$ its probability distribution is given by $N\left(0, \sigma_{x}^{2}\right)$, and we have

$$
\begin{equation*}
E\{x g(x)\}=\int_{-\infty}^{+\infty} x g(x) p(x) d x \tag{3.5}
\end{equation*}
$$

The more general case, where nonlinearities appear also in \dot{x}

$$
\ddot{x}+2 \xi \omega_{0} \dot{x}+\omega_{0}^{2} x+g(x, \dot{x}, t)=f(t)
$$

and where g depends explicitly on t has been treated by Caughey [4].

Literature .

$[1]$ T.K. Caughey: Derivation and application of the Fokker-Planck equation. J. Acoust.Soc.America 35 (1963), 1683.
[2] S.H. Crandall: Perturbation techniques for ran dom vibration of nonlinear systems. J. Acoust. Soc. America 35 (1963), 1700 .
$[3]$ S.H. Crandall (editor) : Random Vibrations. Vol. 2 p.97, M.I.T. Press 1963.
[4] T.K. Caughey: Equivalent 1 inearization techniques. J. Acoust. Soc. America 35 (1963), 1706.

$$
\mathrm{C} H \mathrm{~A} P \mathrm{~T} E \mathrm{R} \quad \mathrm{IV}
$$

ZERO CROSSINGS, PEAKS AND MATERIAL FATIGUE .

To determine the life expectancy of a structure or the probability of its failure, the probability for the stress to exceed a given value, as well as of the mean frequency of this exceedance, must be known. In addition, it will be important to know the distribution of subsequent stress peaks. All these questions are, in general, difficult to answer, particularly so for nonlinear structures.

1. Exceedance of a Given Value.

Fig. 4.1

Consider the stationary random function $x(t)$ and its time-derivative $\dot{\boldsymbol{x}}(\mathrm{t})$.
Let the joint probabilí ty density of \boldsymbol{x} and \dot{x} be $p(\xi, \eta),[1]$.

The probability
that \boldsymbol{x} at time t lies between $\boldsymbol{\xi}$ and $\boldsymbol{\xi}+d \boldsymbol{j}$

[^1]and at the same time, \dot{x} lies between η and $\eta+d \eta$ or, in other words, that the strip between ξ and $\xi+d \xi$ is being crossed with speed between η and $\eta+d \eta$, cf. Fig. 4.1, is given by $p(\xi, \eta) d \xi d \eta$. On the other hand, this expression also represents the time interval which, during unit time, is being spent ${ }^{*)}$ by x with in the strip $d \xi$ while moving with speed η. Now, the duration of a single crossing of the strip is given by $d \xi /|\eta|$, where the absolute sign has to be taken since it is immaterial whether the speed η is positive (going upwards) or negative (going downwards). Dividing now the total time being spent within the strip by the duration of one crossing we obtain the mean number of crossings per unit time, with speed η, (crossing frequency) of the line $\boldsymbol{x}=\boldsymbol{\xi}$:
$$
n_{\xi, \eta}=|\eta| p(\xi, \eta) d \eta
$$

The total number of crossings (with arbitrary speed) per unit time is, therefore,

$$
\begin{equation*}
n_{\xi}=\int_{-\infty}^{+\infty}|\eta| p(\xi, \eta) d \eta \tag{1.1}
\end{equation*}
$$

In particular, the number of passages through zero

[^2]is obtained as
\[

$$
\begin{equation*}
\eta_{0}=\int_{-\infty}^{+\infty}|\eta| p(0, \eta) d \eta \tag{1.2}
\end{equation*}
$$

\]

Since, in the mean, the numbers of upward and downward crossings of the line $x=\xi$ will be equal, we con clude that, in the mean, the frequency for $x(t)$ to ex ceed a given value ξ will be $n_{\xi} / 2$.

If x and \dot{x} are independent ${ }^{*)}$, and \dot{x} is normal $N\left(0, \tau^{2}\right)$,

$$
\begin{equation*}
p(\xi, \eta)=p(\xi) \frac{1}{\tau \sqrt{2 \pi}} e^{-\frac{\eta^{2}}{2 \tau^{2}}} \tag{1.3}
\end{equation*}
$$

it follows from (1.1) that

$$
\begin{equation*}
n_{\xi}=\sqrt{\frac{2}{\pi}} \tau p(\xi) \tag{1.4}
\end{equation*}
$$

If \boldsymbol{x}, too, is normal $N\left(0, \sigma^{2}\right)$, then

$$
\begin{equation*}
n_{\xi}=\frac{1}{\pi} \frac{\tau}{\sigma} e^{-\frac{\xi^{2}}{2 \sigma^{2}}} \tag{1.5}
\end{equation*}
$$

and, in particular,

$$
\begin{equation*}
n_{0}=\frac{1}{\pi} \frac{\tau}{\sigma}=\frac{1}{\pi} \sqrt{-\frac{R^{\prime \prime}(0)}{R(0)}} \tag{1.6}
\end{equation*}
$$

[^3]For wide-band noise, Fig. 4.2

Fig. 4.2
and we have

$$
\sigma^{2}=\frac{1}{\pi} k\left(\omega_{b}-\omega_{a}\right) \quad \tau^{2}=\frac{1}{\pi} \frac{K}{3}\left(\omega_{b}^{3}-\omega_{a}^{3}\right)
$$

Hence, for a normal distribution,

$$
\begin{equation*}
n_{0}=\frac{1}{\pi} \sqrt{\frac{\omega_{a}^{2}+\omega_{a} \omega_{b}+\omega_{b}^{2}}{3}} \tag{1.7}
\end{equation*}
$$

2. Extreme Values.

We now ask for the probability distribution of the extreme values and, in particular, of the peaks of a stochastic process, cf. $\lfloor 1]$, [$2 \bar{j}$ ari [3] , p. 95 .

A peak occurs if $\dot{x}(t)=0$ and $\ddot{x}(t)<0$. Therefore, the probability for a maximum within the intervals $d t$ and $d \xi$ is, since $\dot{x}(t)$ has to change from + to - within that interval, given by
$P[$ Max in $d \xi d t]=P[\xi<x(t)<\xi+d \xi, \eta>\dot{x}(t)=0>\eta-d \eta,-\infty<\ddot{x}<0]$

Denoting by $p(\xi, \eta, \zeta ; t)$

the joint p. density of x, \dot{x}, \ddot{x}, we have, with $d \eta=\zeta d t$,
$P[$ Max in $d \xi d t]=$
$=\int_{-\infty}^{0} p(\xi, 0, \zeta ; t) d \xi(-\zeta d t) d \zeta=$ $=-d \xi d t \int_{-\infty}^{0} \zeta p(\xi, 0, \zeta ; t) d \zeta$

From this relation, the prob-
Fig. 4.3

$$
\begin{equation*}
P[\text { Max }>a \text { per unit time }]=-\int_{a}^{\infty} d \xi \int_{-\infty}^{0} \zeta_{p}(\xi, 0, \zeta ; t) d \zeta \tag{2.2}
\end{equation*}
$$

However, this probability is also equal to the expect ed number $N_{a}(t)$ of maxima above $\boldsymbol{x}=\mathbf{a}$, per unit time. Integration over a given period of time renders the expected number of maxima within that period. In the stationary case, $p(\xi, \eta, \zeta ; t)$ does not depend on t.

If $\boldsymbol{x}(\mathrm{t})$ is a stationary random process with narrow frequency band its realizations have the appear ance of sine waves with slow, random amplitude - and

110 Chap. IV - Zero Crossings, Peaks, Material Fatigue -
frequency modulation, Fig. 4.4. In that case, one may

Fig. 4.4
safely assume that there is only one single maximum or minimum between two zero crossings. Of n_{0} crossings only $\boldsymbol{n}_{\mathrm{a}}$ have, in the mean, an amplitude larger than a. Therefore, approximately,

$$
\begin{equation*}
P[\text { Max>a per unit time }]=\frac{n_{a}}{n_{0}} \tag{2.3}
\end{equation*}
$$

and we have for the probability density of maxima $>a$

$$
\begin{equation*}
P_{M}(a)=-\frac{d P}{d a}=-\frac{1}{n_{0}} \frac{d n_{a}}{d a} \tag{2.4}
\end{equation*}
$$

We return now to Eq. (2.2) and assume $\boldsymbol{x}(t)$ stationary, ergodic and normal with zero mean. Then

$$
\begin{align*}
& E\{x \dot{x}\}=0, E\{\dot{x} \ddot{x}\}=0, E\{x \ddot{x}\}=\lim \frac{1}{2 T} \int_{-T}^{+T} x \ddot{x} d t= \\
& =\lim \frac{1}{2 T}\left[\left.x \dot{x}\right|_{-T} ^{+T}-\int_{-T}^{+T} \dot{x}^{2} d t\right]=-E\left\{\dot{x}^{2}\right\} \tag{2.5}
\end{align*}
$$

From Eq. (I-2.35), with zero mean values, one finds

$$
p(x, y, z)=\frac{1}{\sqrt{8 \pi^{3} D}} \exp \left[-\frac{1}{2 D}\left(m_{11} x^{2}+m_{22} y^{2}+m_{33} z^{2}+2 m_{12} x y+2 m_{23} y z+2 m_{31} z x\right)\right]
$$

where
$D=\left|\begin{array}{lll}\sigma_{1}^{2} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{2}^{2} & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{3}^{2}\end{array}\right|, \quad m_{11}=\sigma_{2}^{2} \sigma_{3}^{2}-\sigma_{23}^{2}, m_{22}=\sigma_{3}^{2} \sigma_{1}^{2}-\sigma_{31}^{2}$,

$$
m_{12}=\sigma_{31} \sigma_{32}-\sigma_{3}^{2} \sigma_{12}, \quad m_{23}=\sigma_{12} \sigma_{13}-\sigma_{1}^{2} \sigma_{23}, m_{31}=\sigma_{23} \sigma_{12}-\sigma_{2}^{2} \sigma_{31}
$$

$$
\sigma_{1}^{2}=E\left\{x^{2}\right\}, \quad \sigma_{12}=E\{x y\} \quad \text { etc. }
$$

Wi.th $x=\xi, y=0, z=\zeta$ and $\sigma_{12}=\sigma_{23}=0, \sigma_{13}=-\sigma_{2}^{2}$ this goes over into

$$
\begin{equation*}
p(\xi, 0, \zeta)=\frac{1}{\sqrt{8 \pi^{3} D}} \exp \left[-\frac{1}{2 D}\left(\sigma_{2}^{2} \sigma_{3}^{2} \xi^{2}+2 \sigma_{2}^{4} \xi \zeta+\sigma_{1}^{2} \sigma_{2}^{2} \zeta^{2}\right)\right] \tag{2.7}
\end{equation*}
$$

112 Chap. IV - Zero Crossings, Peaks, Material Fatigue -

$$
D=\sigma_{2}^{2}\left(\sigma_{1}^{2} \sigma_{3}^{2}-\sigma_{2}^{2}\right)
$$

Differentiating Eq. (2.2), in accordance with Eq. (2.4), with respect to a, and substituting Eq. (2.7) one obtains, after lengthy manipulations, for the p. -density of the envelope

$$
\begin{aligned}
& p_{M}(a)=\frac{1}{\sigma_{1}} \sqrt{\frac{1-\alpha^{2}}{2 \pi}} \exp \left[-\frac{a^{2}}{2 \sigma_{1}^{2}\left(1-\alpha^{2}\right)}\right]+ \\
& +\frac{a}{2 \sigma_{1}^{2}} \alpha\left[1+\operatorname{erf}\left(\frac{a}{\sigma_{1} \sqrt{2}} \frac{\alpha}{\sqrt{1-\alpha^{2}}}\right)\right] \exp \left(-\frac{a^{2}}{2 \sigma_{1}^{2}}\right) \\
& \alpha=\frac{n_{0}^{+}}{N}, \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
\end{aligned}
$$

where

$$
\begin{equation*}
n_{0}^{+}=\frac{1}{2 \pi} \frac{\sigma_{2}}{\sigma_{1}}, N=-\int_{-\infty}^{+\infty} d \xi \int_{-\infty}^{0} \zeta p(\xi, 0, \zeta) d \zeta \tag{2.9}
\end{equation*}
$$

N is the total number of maxima per unit time, independent of their magnitude.

It can be shown that $\boldsymbol{\alpha}$ must lie in the interval $[0,1]$. The upper limit, $\boldsymbol{\alpha}=1$, corresponds to the case of a narrow frequency band, $N=\frac{n_{a}}{2}$.

Eq. (2.8) reduces here to a Rayleigh distribution

$$
\begin{equation*}
P_{M}(a)=\frac{a}{\sigma_{1}^{2}} \exp \left(-\frac{a^{2}}{2 \sigma_{1}^{2}}\right) \tag{2.10}
\end{equation*}
$$

If, on the other hand, $\boldsymbol{\alpha}$ is very small, we have the case where the mean number of maxima is much larger than that of zero crossings, cf. Fig. 4.3. Eq. (2.8) then, in the limit $\alpha=0$, goes over into a normal distribution:

$$
\begin{equation*}
p_{M}(a)=\frac{1}{\sigma_{1} \sqrt{2 \pi}} \exp \left(-\frac{a^{2}}{2 \sigma_{1}^{2}}\right) \tag{2.11}
\end{equation*}
$$

If $\boldsymbol{x}(\mathrm{t})$ is not normal as, for instance, in the case of a nonlinear structure, the evaluation of Eq. (2.2) not only presents great difficulties but, moreover, there exists, in general, no possibility at all to determine $p(x, \dot{x}, \ddot{x} ; t)$, even for a Markov process. The simple reason for this lies in the fact that the differential equation of a mechanical system is of order two and, thus, permits the determination of $p(x, \dot{x}, t)$ only. In order to improve on this situation it has been suggested,
$[1]$, to employ a different definition of the concept of envelope. Let the restoring force of the system have the potential $V(\boldsymbol{x})$. If one then imagines, at every instant, the total energy of the system (per unit mass) to be transformed into potential energy,

$$
\begin{equation*}
\frac{\dot{x}^{2}}{2}+V(x)=V(a) \tag{2.12}
\end{equation*}
$$

one obtains the maximum possible amplitude a at that instant. The curve in the \boldsymbol{x}, t -diagram, formed by these amplitudes, may also be considered an envelope whose p.-distribution is then given by

$$
P[|x| \leqslant a]=\int_{-a}^{a} d x \int_{-y}^{y} p(x, \dot{x}) d \dot{x}=4 \int_{0}^{a} d x \int_{0}^{y} p(x, \dot{x}) d \dot{x}
$$

with

$$
\begin{equation*}
y(x, a)=\sqrt{2[V(a)-V(x)]} \tag{2.13}
\end{equation*}
$$

Differentiation renders the p.-density of the envelope as

$$
\begin{equation*}
P_{M}(a)=\frac{d P}{d a}=4 V^{\prime}(a) \int_{0}^{a} \frac{P[x, y(x, a)]}{y(x, a)} d x \tag{2.14}
\end{equation*}
$$

We observe that now only knowledge of $p(x, \dot{x})$ is ne cessary for the determination of $P_{M}(a)$.

3. Criteria of Fatigue.

In order to obtain some measure of material fatigue in the case of a randomly fluctuating load
the Palmgren-Miner law will be assumed to be valid. According to this law, damage produced by the i-th load cycle is equal to, $[1]$,

$$
s_{i}=k a_{i}^{\alpha}
$$

where a_{i} is the stress amplitude, and k and $\boldsymbol{\alpha}$ are material constants. The damages caused by subsequent load cycles are assumed to superpose linearly. Hence, after n cycles damage has increased to

$$
S=\sum_{i=1}^{n} s_{i}
$$

Now, if a_{i} is a random variable, S too is random, and we find for the expectation of damage after $n c y c l e s$

$$
\begin{equation*}
E\{S\}=\sum E\left\{s_{i}\right\}=n k E\left\{a^{\alpha}\right\}=n k \int_{0}^{\infty} a^{\alpha} p_{M}(a) d a \tag{3.1}
\end{equation*}
$$

If we refer the process to the time interval ($0, T$] rather than to the number n of load cycles, we may write, in the stationary case,

$$
\begin{equation*}
n=n_{0}^{+} T=\frac{n_{0}}{2} T \tag{3.2}
\end{equation*}
$$

assuming a narrow frequency band, Fig. 4.4.

In order to make the diagrams and tables obtained in the usual deterministic fatigue tests of materials applicable to random load fluctuations, J.W. Miles has suggested, $[7]$, to introduce an "equivalent" cycle stress, whose frequency is n_{0}^{+}, and whose amplitude is given by

$$
\begin{equation*}
A^{\alpha}=\int_{0}^{\infty} a^{\alpha} P_{M}(\alpha) d a \tag{3.3}
\end{equation*}
$$

The total damage is then the same in both cases*). We also mention another mathematical model frequently used for the determination of the expected lifetime of structural, in particular electronic, components (radio tubes, for instance). The model is characterized by the two following assumptions, see [4], p. 61:
(a) If the lifetime of the component has reached the value t, the probability that it will fail in the time interval $(t, t+d t]$ is given by

$$
P_{+}[\text {failure in the interval } d t]=a(t) d t
$$

where $\alpha(t)$ is a given function, compensating for the increasing wear and, hence, increasing probability of failure with increasing service time of the component.

[^4](b) The probability of putting a defective component into service is zero:
$$
P_{t}=0 \quad \text { for } \quad t \leqslant 0
$$

Let $F(t)$ denote the $p .-$ distribution of the component

$$
P[T \leqslant t]=F(t)
$$

where T represents lifetime. Now

$$
P[t<T \leqslant t+d t]=P[T \leqslant t+d t \mid T>t] P[T>t]
$$

Since

$$
\begin{aligned}
& P[t<T \leqslant t+d t]=F(t+d t)-F(t)=F^{\prime}(t) d t+\ldots \\
& P[T>t]=1-F(t)
\end{aligned}
$$

and, according to (a),

$$
P[T \leqslant t+d t \mid T>t]=a(t) d t
$$

we obtain the differential equation

$$
F^{\prime}(t)=[1-F(t)] a(t)
$$

118 Chap. IV - Zero Crossings, Peaks, Material Fatigue -

Integration renders, with initial condition taken into consideration,

$$
\begin{equation*}
F(t)=1-\exp \left(-\int_{0}^{t} a(\tau) d \tau\right) \quad(t \geqslant 0) \tag{3.4}
\end{equation*}
$$

A frequently used expression for the fundLion $a(t)$ is

$$
\begin{equation*}
a(t)=\alpha+\beta e^{r t} \tag{3.5}
\end{equation*}
$$

Putting $\boldsymbol{\alpha}=0$ one obtains the Weibull-distribution*.
*) For details and additional references see $[9]$.

Literature .

[1] S.H. Crandall: Zero crossings, peaks, and other statistical measures of random responses. J. Acoust. Soc. Am. 35 (1963), 1693
[2] Y.K. Lin: Probability distributions of stress peaks in linear and nonlinear structures. AIAA-J. $1(1963), 1133$.
[3] J.D. Robson: Random Vibration. Elsevier.Amsterdam 1964.
[4] J. Heinhold and K.W. Gaede: Ingenieur-Statistik. O1denbourg-Verlag. München-Wien 1964 .
[5] M. Shinozuka and J.T.P. Yao: On the two-sided time dependent barrier problem, J.Sound Vib. 6 (1967) 98.
[6] R.W.Lardner: A theory of random fatigue. J. Mech. Phys. Solids 15(1967), 205 .
[7] J.W.Miles: On structural fatigue under random loading. J.Aeron. Sci. 21 (1954), 753.
[8] S.H. Crandall (editor): Random Vibration. Vol. 2 , p. 126 ff. M.I.t. Press 1963.
[9] A.M. Freudenthal: Combination of the theories of elasticity, plasticity and viscosity in study ing the safety of structures. Eighth Congress Int. Ass. Bridge Struct. Enging., New York 1968.

C H A P T E R V

STOCHASTIC STABILITY .

We turn now to the investigation of differ ential equations whose coefficients are random functions ("parametric excitation"). Such equations occur frequently in applications: flutter of ajrcraft wings in turbulent atmosphere, instruments on shaking ground or shaking suspensions, wave propagation in inhomogeneous media etc. In this connection, the question of stability or instability of the motion is of fundamen tal importance.

We first give a simple example.

1. Pendulum with Randomly Shaken Suspension Point .

Fig. 5.1
where $\boldsymbol{\lambda}$ is the coefficient of damping. For small amplitudes this simplifies to

$$
\begin{equation*}
\ddot{\Theta}+2 \alpha \dot{\Theta}+\left[\omega_{0}^{2}-\alpha(t)\right] \Theta=0 \tag{1.1}
\end{equation*}
$$

where

$$
2 a=\frac{\lambda}{m l^{2}}, \omega_{0}^{2}=\frac{g}{l}, \alpha(t)=\frac{\ddot{x}(t)}{l}
$$

An extensive 1 iterature*) exists for differ
ential equation (1.1) and related equations for the case where $\alpha(t)$ is a deterministic, periodic function. If, however, $\alpha(t)$ is random, the corresponding motion is random and the question of its stability becomes a probabilistic problem. To solve it the concept of stability must first be generalized to random functions.

2. Definition of Stochastic Stability .

We first recall the deterministic definition of Lyapunov stability.

Let $x \equiv$ O be the equilibrium or null solution whose stability properties are being tested.
*) See, for instance, [1], where a rather complete list of references may be found.
$x=\left(x_{1}, x_{2} \ldots x_{n}\right)$ is assumed to be an n-vector. Now let the equilibrium be disturbed and the system be moved to an initial state x_{0} at time $t=t_{0}$. Denote the ensuing solution by $x(t)$. The equilibrium solution is then said to be stable in the sense of Lyapunov if, given $\boldsymbol{\varepsilon}>0$, there exists an $\eta\left(\boldsymbol{\varepsilon}, \mathrm{t}_{0}\right)$ such that, for all $t \geqslant t_{0}$,

$$
\begin{equation*}
\|x(t)\|<\varepsilon \tag{2.1}
\end{equation*}
$$

provided $\left\|x_{0}\right\|<\eta$ initially. $\|x(t)\|$ denotes the norm

$$
\begin{equation*}
\|x(t)\|=\sum_{i=1}^{n}\left|x_{i}(t)\right| \tag{2.2}
\end{equation*}
$$

If η can be chosen independently of t_{0}, the equilib rium solution $\boldsymbol{x} \equiv 0$ is said to be uniformly stable.

If $\quad x \equiv 0$ is stable and if, in addition,

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\|x(t)\|=0 \tag{2.3}
\end{equation*}
$$

equilibrium is said to be asymptotically stable. Finally, if (2.3) holds for any \boldsymbol{x}_{0}, the equilibrium solution is said to be asymptotically stable in the 1.arge.

Turning to the concept of stochastic stability, we note that $\|x(t)\|$ is now a random
variable. Hence, definitions (2.1) and (2.3) must be reformulated, which can be done in various ways, cf. [2]. Three widely used definitions are listed in the following.

> (a) Stability of the Mean. The equilibrium solution has mean stability if, given $\varepsilon>0$, there exists $\eta\left(\varepsilon, t_{0}\right)$ such that, for all $t \geqslant t_{0}$,

$$
\begin{equation*}
E\{\|x(t)\|\}<\varepsilon \tag{2.4}
\end{equation*}
$$

provided $\left\|x_{0}\right\|<\eta \quad$ initially.

$$
\begin{align*}
& \text { If } \\
& \qquad \lim _{t \rightarrow \infty} E\{\|x(t)\|\}=0 \tag{2.5}
\end{align*}
$$

we have asymptotic stability of the mean.
(b) Stability of Mean Square. The equilibrim solution has mean square stability if, given $\varepsilon>0$, there exists $\eta\left(\varepsilon, t_{0}\right)$ such that, for all $t \geqslant t_{0}$,

$$
\begin{equation*}
E\left\{\|x(t)\|_{2}\right\}<\varepsilon \tag{2.6}
\end{equation*}
$$

provided $\left\|\boldsymbol{x}_{0}\right\|<\eta$ initially. $\|x(t)\|_{m} \quad$ is defined by

$$
\begin{equation*}
\|x\|_{m}=\sum_{i=1}^{n}\left|x_{i}\right|^{m} \tag{2.7}
\end{equation*}
$$

If

$$
\begin{equation*}
\lim _{t \rightarrow \infty} E\left\{\|x(t)\|_{2}\right\}=0 \tag{2.8}
\end{equation*}
$$

the equilibrium solution is said to have asymptotic stability of the mean square.
(c) Almost Sure Asymptotic Stability. The equilibrium solution is said to be almost surely asymptotically stable (or asymptotically stable with probability one) if, for any $\boldsymbol{\varepsilon}>0$,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} P[\|x(t)\|>\varepsilon]=0 \tag{2.9}
\end{equation*}
$$

Stronger stability definitions are obtained if $\|x(t)\|$ is replaced by $\sup _{t \geqslant t_{0}}\|x(t)\|$. The study of the latter random variable, however, requires much more sophisticated techniques.

3. Sufficient Conditions for Almost Sure Stability .

Consider the linear system of differen-
tial equations

$$
\dot{x}_{i}=\sum_{j}\left[a_{i j}+f_{i j}(t)\right] x_{j} \quad(i, j=1,2 \ldots n) \quad \text { (3.1) }
$$

where the $f_{i j}(t)$ are random processes, stationary in
the strict sense, and continuous and ergodic with probability one. From continuity, existence and uniquines with probability one of the solution of (3.1) follow in $[0, \infty)$.

Kozin [3] was the first to give a sufficient condition for almost sure stability. For its deriveLion we need the Gronwall-Bellman lemma: If

$$
\begin{equation*}
u(t) \leqslant C+\int_{0}^{t} u(\tau) v(\tau) d \tau \tag{a}
\end{equation*}
$$

with $u(t) \geqslant 0, v(t) \geqslant 0$, and $C \geqslant 0$, then, also

$$
\begin{equation*}
u(t) \leqslant c \exp \int_{0}^{t} v(\tau) d \tau \tag{b}
\end{equation*}
$$

Proof: From (a)

$$
\frac{u v}{c+\int_{0}^{t} u v d \tau} \leq v
$$

and, upon integration,

$$
\log \left(C+\int_{0}^{t} u v d \tau\right)-\log C \leqslant \int_{0}^{t} v d \tau
$$

where the constant of integration C has been put equal to zero which, obviously, represents the strong est condition.

Therefore,

$$
C+\int_{0}^{t} u v d \tau \leqq C \exp \int_{0}^{t} v d \tau, \quad \text { Q.E.D. }
$$

We now write the solution of Eq. (3.1) in the form

$$
\begin{equation*}
x_{i}(t)=y_{i}(t)+\sum_{j} \sum_{k} \int_{0}^{t} Y_{i j}(t-\tau) f_{j k}(\tau) x_{k}(\tau) d \tau \tag{3.2}
\end{equation*}
$$

where $y_{i}(t)$ is that solution of the system

$$
\begin{equation*}
\dot{x}_{i}=\sum_{j} a_{i j} x_{j} \tag{3.3}
\end{equation*}
$$

for which initially $y_{i}(0)=x_{i}(0)$, while $Y_{i j}(t)$ represents the fundamental system of solutions of (3.3) for which initially $Y_{i j}(0)=\delta_{i j}$, cf. (II-2.6). Using now the norm (2.2) for the vector $\underset{\sim}{x}(t)=\left[x_{1}(t), \ldots x_{n}(t)\right]$, and the norm

$$
\|M\|=\sum_{i} \sum_{j}\left|m_{i j}\right|
$$

for the matrix $M=\left(m_{i j}\right)$, we obtain from Eq. (3.2) and as a consequence of

$$
\|a+b\| \leqslant\|a\|+\|b\|,\|M \underset{\sim}{x}\| \leqslant\|M\| \cdot\|x\|
$$

the inequality

$$
\begin{equation*}
\|x(t)\| \leqslant\|y(t)\|+\int_{0}^{t}\|Y(t-\tau)\| \cdot\|F(\tau)\| \cdot\|x(\tau)\| d \tau \tag{3.4}
\end{equation*}
$$

Since we have assumed asymptotic stability (sufficient conditions), we may write

$$
\begin{equation*}
\|y(t)\| \leqslant a e^{-\alpha t},\|Y(t)\| \leqslant b e^{-\alpha t} \tag{3.5}
\end{equation*}
$$

with suitably chosen positive a, b and α. Then, from Eq. (3.4) ,

$$
\|x(t)\| \leqslant e^{-\alpha t}\left[a+b \int_{0}^{t} e^{\alpha \tau}\|F(\tau)\| \cdot\|x(\tau)\| d \tau\right]
$$

Applying the Gronwall-Bellman lemma we obtain

$$
\|x(t)\| \leqslant a \exp \left[-\alpha t+b \int_{0}^{t}\|F(\tau)\| d \tau\right]
$$

If the exponent on the right-hand side is written ir the form

$$
\left[-\alpha+b \frac{1}{t} \int_{0}^{t}\|F(\tau)\| d \tau\right] t
$$

it follows, as consequence of the ergodicity of the $f_{i j}(t)$, ie., or

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}\|F(\tau)\| d \tau=E\{\|F(\tau)\|\}
$$

that the condition

$$
\begin{equation*}
E\{\|F(t)\|\}<\frac{\alpha}{b} \tag{3.6}
\end{equation*}
$$

is sufficient for almost sure stability.
Condition (3.6) severely restricts the class of "stable functions" $f_{i j}(t)$ and is, therefore of little practical value. Infante [4] has given a considerably improved condition. For its derivation, we rewrite Eq. (3.1) in matrix form

$$
\begin{equation*}
\dot{x}(t)=[A+F(t)] x(t) \tag{3.1a}
\end{equation*}
$$

and assume, in addition,

$$
\begin{equation*}
E\{F(t)\}=0 \tag{3.7}
\end{equation*}
$$

We need the following lemma whose proof may be found in the textbooks on matrix theory:
Lemma. Let B and D be two real, symmetric $n \times n$ matricess, with B positive definite. Then the matrix $D B^{-1}$ possesses n real eigenvalues $\boldsymbol{\lambda}_{i}$, and

$$
\lambda_{\min }=\min _{x} \frac{x^{\top} D x}{x^{\top} B x} \quad, \quad \lambda_{\max }=\max _{x} \frac{x^{\top} D x}{x^{\top} B x}
$$

Consider now the quadratic Lyapunov fundLion

$$
V(x)=x^{\top} B x
$$

Since B is positive definite, so is $V(x)$. Differentiation renders

$$
\dot{V}=\dot{x}^{\top} B x+x^{\top} B \dot{x}
$$

and we have, along a solution of (3.1a)

$$
\dot{V}=[(A+F) x]^{\top} B x+x^{\top} B(A+F) x=x^{\top}(A+F)^{\top} B x+x^{\top} B(A+F) x
$$

Now we form

$$
\lambda(t)=\frac{\dot{V}(x)}{V(x)}=\frac{x^{\top}\left[(A+F)^{\top} B+B(A+F)\right] x}{x^{\top} B x}
$$

Putting

$$
(A+F)^{\top} B+B(A+F)=D
$$

the lemma may be employed, and $\lambda(t)$ may be bounded from below and above as

$$
\lambda_{\min }\left(D B^{-1}\right) \leqq \lambda(t) \leqq \lambda_{\max }\left(D B^{-1}\right)
$$

According to Lyapunov's theory, the motion (3.1a) is asymptotically stable for \dot{V} negative. Hence, in the present case,

$$
V=V[x(0)] \exp \int_{0}^{t} \lambda(\tau) d \tau \equiv V[x(0)] \exp \left[\frac{1}{t} \int_{0}^{t} \lambda(\tau) d \tau\right] t
$$

must be bounded and approach zero with probability one for $t \rightarrow \infty$. Again, the ergodic theorem renders

$$
E\{\lambda(t)\}<0
$$

and this leads to the theorem of Infante:
Theorem: If, for a positive definite matrix B and some $\boldsymbol{\varepsilon}>0$,

$$
E\left\{\lambda_{\max }\right\} \leqslant-\varepsilon
$$

where $\lambda_{\text {max }}$ is the largest eigenvalue of the matrix

$$
\begin{equation*}
A^{\top}+F^{\top}+B(A+F) B^{-1} \tag{3.8}
\end{equation*}
$$

the system (3.1a) is almost surely asymptotically stable in the large.

The theorem gives no clue as to the construction of the optimal matrix B . Furthermore, since the matrix (3.8) contains the matrix $F(t) \equiv\left(f_{i j}(t)\right)$ which is only statistically known, the theorem is difficult to apply. Infante has, therefore, given two cor ollaries which are easier to handle but place more severe restrictions on the functions $f_{i j}(t)$. We list the second without proof:

Corollary. if the matrix $F(t)$ in Eq. (3.la) is written in the form

$$
\begin{equation*}
F(t)=\sum_{i=1}^{m} \varphi_{i}(t) C^{(i)} \text { or } \quad F_{i j}(t)=\sum_{k=1}^{m} \varphi_{k}(t) C_{i j}^{(k)} \tag{3.9}
\end{equation*}
$$

with $m \leqslant n^{2}$, and if, with a positivr definite ma-
trix B and some $\varepsilon>0$,

$$
\begin{equation*}
\frac{1}{2} \sum_{i=1}^{m}\left(\mu_{\max }^{(i)}-\mu_{\min }^{(i)}\right) E\left\{\left|\varphi_{i}(t)\right|\right\}+\nu_{\text {max }} \leqslant-\varepsilon \tag{3.10}
\end{equation*}
$$

then (3.1a) is almost surely asymptotically stable in the large. The $\mu^{(i)}$ are the eigenvalues of the matrix

$$
C^{(i) T}+B C^{(i)} B^{-1}
$$

and $\boldsymbol{\nu}_{\text {max }}$ is the largest eigenvalue of the matrix

$$
A^{\top}+B A B^{-1}
$$

We note that, now, only the eigenvalues of known matrices have to be calculated.

As an example, consider the equation of the linear oscillator with parametric excitation

$$
\begin{equation*}
\ddot{x}+2 \xi \dot{x}+[1+f(t)] x=0 \tag{3.11}
\end{equation*}
$$

Putting $\quad x=x_{1}, \dot{x}=x_{2}$ we have

$$
A=\left(\begin{array}{cc}
0 & 1 \tag{3.12}\\
-1 & -2 \xi
\end{array}\right), \quad C=\left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right)
$$

We first apply Kozin's theorem. From the general solution of (3.11), with $f(t) \equiv 0$, one has
at once for the bounds in (3.5)

$$
\alpha=\xi, \quad b=\frac{4}{\sqrt{1-\xi^{2}}}
$$

Since

$$
\|F(t)\|=|f(t)|
$$

Eq. (3.6) renders

$$
\begin{equation*}
E\{|f(t)|\}<\frac{\zeta}{4} \sqrt{1-\xi^{2}} \tag{3.13}
\end{equation*}
$$

Now we use Infante's theorem and choose for the matrix B the most general quadratic, positive definite form

$$
B=\left(\begin{array}{ll}
\alpha_{1}^{2}+\alpha_{2} & \alpha_{1} \tag{3.14}\\
\alpha_{1} & 1
\end{array}\right), \alpha_{2}>0
$$

with $\boldsymbol{\alpha}_{1}$ and $\boldsymbol{\alpha}_{2}$ as yet undetermined. They will be used later to make B optimal.

First we have

$$
B^{-1}=\frac{1}{\alpha_{2}}\left(\begin{array}{cc}
1 & -\alpha_{1} \\
-\alpha_{1} & \alpha_{1}^{2}+\alpha_{2}
\end{array}\right)
$$

and, therefore, for the matrix
$B(A+F) B^{-1}$

$$
\frac{1}{\alpha_{2}}\left(\begin{array}{ll}
-\alpha_{1}(1+f)-\alpha_{1}^{2}\left(\alpha_{1}-2 \xi\right)-\alpha_{1} \alpha_{2} & \alpha_{1}^{2}(1+f)+\left(\alpha_{1}^{2}+\alpha_{2}\right)\left[\alpha_{1}\left(\alpha_{1}-2 \xi\right)+\alpha_{2}\right] \\
-(1+f)-\alpha_{1}\left(\alpha_{1}-2 \xi\right) & \alpha_{1}(1+f)+\left(\alpha_{1}-2 \xi\right)\left(\alpha_{1}^{2}+\alpha_{2}\right)
\end{array}\right)
$$

The largest eigenvalue of the matrix (3.8) follows as

$$
\begin{equation*}
\lambda_{\max }=-2 \zeta+\sqrt{4\left(\zeta-\alpha_{1}\right)^{2}+\frac{1}{\alpha_{2}}\left[\alpha_{2}+\alpha_{1}^{2}-1-f(t)+2 \alpha_{1}\left(\zeta-\alpha_{1}\right)\right]^{2}} \tag{3.15}
\end{equation*}
$$

Putting $f=0$ we obtain $\boldsymbol{v}_{\text {max }}$. Finally

$$
C^{T}+B C B^{-1}=\frac{-1}{\alpha_{2}}\left(\begin{array}{ll}
\alpha_{1} & \alpha_{2}-\alpha_{1}^{2} \\
1 & -\alpha_{1}
\end{array}\right)
$$

whence

$$
\mu_{\max }=+\frac{1}{\sqrt{\alpha_{2}}}, \quad \mu_{\min }=-\frac{1}{\sqrt{\alpha_{2}}}
$$

The theorem then renders

$$
E\left\{-2 \xi+\sqrt{4\left(\xi-\alpha_{1}\right)^{2}+\frac{1}{\alpha_{2}}\left[\alpha_{2}+\alpha_{1}^{2}-1-f(t)+2 \alpha_{1}\left(\xi-\alpha_{1}\right)\right]^{2}}\right\}<0
$$

and the corollary gives

$$
\frac{1}{\sqrt{\alpha_{2}}} E\{|F(t)|\}<2 \xi-\sqrt{4\left(\xi-\alpha_{1}\right)^{2}+\frac{1}{\alpha_{2}}\left[\alpha_{2}+\alpha_{1}^{2}-1+2 \alpha_{1}\left(\xi-\alpha_{1}\right)\right]^{2}}
$$

We now choose $\boldsymbol{\alpha}_{1}$ and $\boldsymbol{\alpha}_{2}$ such as to make
$E\{|f(t)|\}=$ max. First, from

$$
\frac{\partial}{\partial \alpha_{1}} E\{\cdot\}=0
$$

$\boldsymbol{\alpha}_{1}=\boldsymbol{\xi}$ follows. Upon substitution $\boldsymbol{\alpha}_{2}$ follows by inspection, and one finds

$$
\begin{aligned}
& \alpha_{1}=\xi, \quad \alpha_{2}=1-\xi^{2}, \text { if } \xi \leqslant 1 / \sqrt{2} \\
& \alpha_{1}=\xi, \quad \alpha_{2}=\xi^{2}, \quad \text { if } \zeta \geqslant 1 / \sqrt{2}
\end{aligned}
$$

and, hence, from the theorem,

$$
\begin{align*}
& E\{|f(t)|\}<2 \xi \sqrt{1-\xi^{2}}, \quad \xi \leqslant 1 / \sqrt{2} \tag{3.16}\\
& E\left\{\left|f(t)+1-2 \xi^{2}\right|\right\}<2 \xi^{2}, \quad \xi \geqslant 1 / \sqrt{2}
\end{align*}
$$

while, from the corollary,

$$
\begin{array}{ll}
E\{|f(t)|\}<2 \xi \sqrt{1-\xi^{2}}, & \xi \leqslant 1 / \sqrt{2} \tag{3.17}\\
E\{|f(t)|\} \leqslant 1, & \xi \geqslant 1 / \sqrt{2}
\end{array}
$$

One notes that, for $\boldsymbol{\xi} \leqslant 1 / \sqrt{2}$, the same bounds are rendered by theorem and corollary, while, for strong damping, $\quad \xi>1 / \sqrt{2}$, the conditions of the theorem are considerably weaker. In addition, a comparison with (3.13) shows that the bound obtained from Kozin's theorem is much lower and, in fact, practically useless. This becomes particularly obvious if one trans-
forms from $E\{|f(t)|\}$ to $E\left\{f^{2}(t)\right\}$ with the aid of the Schwarz inequality

$$
E^{2}\{|f(t)|\} \leqslant E\left\{f^{2}(t)\right\}
$$

4. Stability of the Mean in the Presence of White Noise.

Frequently, one is satisfied with investgating stability of the mean or, eventually, mean square. The investigation of the stability of higher moments leads, in general, already to considerable computational difficulties.

In addition to restricting ourselves to

 linear systems we assume the coefficients to be white noise. It is not difficult to develop a theory valid for a system of n differential equations [5]. However, here we consider only one equation:$$
\begin{equation*}
\ddot{y}+\left[\alpha+\alpha_{1}(t)\right] \dot{y}+\left[\omega_{0}^{2}+\alpha_{0}(t)\right] y=f(t)+\alpha_{2}(t) \tag{4.1}
\end{equation*}
$$

where a and ω_{0}^{2} are constants, $f(t)$ is a determine istic excitation, and $\boldsymbol{\alpha}_{0}(\mathrm{t}), \boldsymbol{\alpha}_{1}(\mathrm{t})$ and $\boldsymbol{\alpha}_{2}(\mathrm{t})$ are stationary, normal, white random processes with

$$
<\alpha_{i}(t)>=0, \quad<\alpha_{i}(t) \alpha_{j}(s)>=2 D_{i j} \delta(t-s) \quad \text { (4.2) }
$$

where $D_{i j}=D_{j i}$

The Fokker-P1anck equation (I-9.20), corresponding to (4.1), is

$$
\begin{align*}
\frac{\partial p}{\partial t}= & -\frac{\partial(\dot{y} p)}{\partial y}-\frac{\partial}{\partial \dot{y}}\left\{\left[f(t)-D_{21}-\left(\omega_{0}^{2}-D_{10}\right) y-\left(a-D_{11}\right) \dot{y}\right] p\right\}+ \\
& +\frac{\partial^{2}}{\partial \dot{y}^{2}}\left\{\left[D_{00} y^{2}+\left(D_{10}+D_{01}\right) y \dot{y}+D_{11} \dot{y}^{2}-\right.\right. \tag{4.3}\\
& \left.\left.-2\left(D_{20} y+D_{21} \dot{y}\right)+D_{22}\right] p\right\}=0
\end{align*}
$$

For the expectation of a function $F(y, \dot{y})$,

$$
\begin{equation*}
\langle F(y, \dot{y})\rangle=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F(y, \dot{y}) p(y, \dot{y} ; t) d y d \dot{y} \tag{4.4}
\end{equation*}
$$

one obtains, upon multiplying (4.3) by F, and intergrating,

$$
\frac{d<F>}{d t}=-\int_{-\infty}^{+\infty}\left[\left.\dot{y} F p\right|_{y=-\infty} ^{+\infty}-\int_{-\infty}^{+\infty} \dot{y} \frac{\partial F}{\partial y} p d y\right] d \dot{y}-\left[f(t)-D_{21}\right] \int_{-\infty}^{+\infty}\left[\left.F p\right|_{\dot{y}=-\infty} ^{+\infty}-\int_{-\infty}^{+\infty} \frac{\partial F}{\partial \dot{y}} p d \dot{y}\right] d y+
$$

$$
+\left(\omega_{0}^{2}-D_{10}\right) \int_{-\infty}^{+\infty}\left[\left.F p y\right|_{\dot{y}=-\infty} ^{+\infty}-\int_{-\infty}^{+\infty} y \frac{\partial F}{\partial \dot{y}} p d \dot{y}\right] d y+\left(a-D_{11}\right)\left[-\int_{-\infty}^{+\infty} \frac{\partial F}{\partial \dot{y}} \dot{y} p d y d \dot{y}\right]+
$$

$$
\begin{aligned}
& +D_{00}\left[-\int_{-\infty}^{+\infty} \frac{\partial}{\partial y}\left(y^{2} F\right) \frac{\partial p}{\partial \dot{y}} d y d \dot{y}\right]+2 D_{10}\left[-\iint_{-\infty}^{+\infty} \frac{\partial}{\partial \dot{y}}(y F) \frac{\partial(\dot{y} p)}{d \dot{y}} d y d \dot{y}\right]+ \\
& +D_{11}\left[-\iint_{-\infty}^{+\infty} \frac{\partial F}{\partial y} \frac{\partial\left(\dot{y}^{2} p\right)}{\partial \dot{y}} d y d \dot{y}\right]+2 D_{20} \iint_{-\infty}^{+\infty} \frac{\partial}{\partial \dot{y}}(y F) \frac{\partial p}{\partial \dot{y}} d y d \dot{y}+ \\
& +2 D_{21} \int_{-\infty}^{+\infty} \frac{\partial F}{\partial \dot{y}} \frac{\partial(\dot{y} p)}{\partial \dot{y}} d y d \dot{y}+2 D_{22} \iint_{-\infty}^{+\infty} \int_{-\infty}^{\partial \dot{y}} \frac{\partial p}{\partial \dot{y}} d y d \dot{y}
\end{aligned}
$$

Here, integration by parts has been used. The integrated parts vanish (they have been written out explicitly only for the first three terms), and one ob tains, after a second integration by parts,

$$
\begin{align*}
\frac{d<F\rangle}{d t} & \left.=\left\langle\dot{y} \frac{\partial F}{\partial y}\right\rangle+\left[f(t)-D_{21}\right]<\frac{\partial F}{\partial \dot{y}}\right\rangle-\left(\omega_{0}^{2}-D_{10}\right)\left\langle y \frac{\partial F}{\partial \dot{y}}\right\rangle- \\
& \left.-\left(d-D_{11}\right)<\dot{y} \frac{\partial F}{\partial \dot{y}}\right\rangle+D_{00}<y^{2} \frac{\partial^{2} F}{\partial \dot{y}^{2}}>+2 D_{10}<y \dot{y} \frac{\partial^{2} F}{\partial \dot{y}^{2}}>+ \\
& \left.\left.+D_{11}<\dot{y}^{2} \frac{\partial^{2} F}{\partial \dot{y}^{2}}>-2\left[D_{20}<y \frac{\partial^{2} F}{\partial \dot{y}^{2}}\right\rangle+D_{21}<\dot{y} \frac{\partial^{2} F}{\partial \dot{y}^{2}}\right\rangle+D_{22}<\frac{\partial^{2} F}{\partial \dot{y}^{2}}>\right] \tag{4.5}
\end{align*}
$$

Putting now $F=y$ and $F=\dot{y}$, one gets, respectively,

$$
\frac{d\langle y\rangle}{d t}=\langle\dot{y}\rangle, \frac{d\langle\dot{y}\rangle}{d t}=f(t)-D_{21}-\left(\omega_{0}^{2}-D_{10}\right)\langle y\rangle-\left(a-D_{11}\right)\langle\dot{y}\rangle
$$

Elimination of $<\dot{y}>$ leads to the following differential equation for the mean $\langle y\rangle$:

$$
\begin{equation*}
\frac{d^{2}\langle y\rangle}{d t^{2}}+\left(a-D_{11}\right) \frac{d\langle y\rangle}{d t}+\left(\omega_{0}^{2}-D_{10}\right)\langle y\rangle=f(t)-D_{21} \tag{4.6}
\end{equation*}
$$

Stability of this deterministic equation may now be discussed in the usual manner, using, for instance, the Routh-Hurwitz criteria.

5. Stability of Mean Square in the Presence of White Noise.

For the sake of simplicity, we restrict ourselves to the case $\boldsymbol{\alpha}_{1}(t)=\boldsymbol{\alpha}_{2}(t)=0$ in Eq. (4.1). Only the coefficient of y is then random*) and Eq. (4.5) reduces to

$$
\frac{d\langle F\rangle}{d t}=\left\langle\dot{y} \frac{\partial F}{\partial y}\right\rangle-\omega_{0}^{2}\left\langle y \frac{\partial F}{\partial \dot{y}}\right\rangle-\alpha\left\langle\dot{y} \frac{\partial F}{\partial \dot{y}}\right\rangle+D_{00}\left\langle y^{2} \frac{\partial^{2} F}{\partial \dot{y}^{2}}\right\rangle+F(t)\left\langle\frac{\partial F}{\partial \dot{y}}\right\rangle
$$

*) The two Fokker-Planck equations (I -9.16) and (I-9.20) become identical in this case!

By suitable choices of F sne obtains

$$
\begin{align*}
& \frac{d\langle y\rangle}{d t}=\langle\dot{y}\rangle, \frac{d\langle\dot{y}\rangle}{d t}=-\omega_{0}^{2}\langle y\rangle-a\langle\dot{y}\rangle+f(t) \tag{5.2}\\
& \frac{d\left\langle y^{2}\right\rangle}{d t}=2\langle y \dot{y}\rangle, \frac{d\langle y \dot{y}\rangle}{d t}=\left\langle\dot{y}^{2}\right\rangle-\omega_{0}^{2}\left\langle y^{2}\right\rangle-a\langle y \dot{y}\rangle+f(t)\langle y\rangle \tag{5.3}\\
& \frac{d\left\langle\dot{y}^{2}\right\rangle}{d t}=-2 \omega_{0}^{2}\langle y \dot{y}\rangle-2 a\left\langle\dot{y}^{2}\right\rangle+2 D_{00}\left\langle y^{2}\right\rangle+2 f(t)\langle\dot{y}\rangle
\end{align*}
$$

One observes that, for $f(t) \equiv 0$, the equations for the various moments are decoupled: (5.2) contains only the moments of order one, while (5.3) contains on $1 y$ the second-order moments.If $f(t) \neq 0$, Eq. (5.3) contains, in addition, the preceding first-order moments, but no higher ones. This is no longer so if the coefficient $\alpha_{0}(t)$ is not white noise but is obtained from white noise by linear filtering, i.e., for instance, by

$$
\dot{\alpha}_{0}+\beta \alpha_{0}=\gamma w(t)
$$

The equations for the moments are then coupled, [7], i.e., those of order two contain the moments of order two and three which, in turn, depend on those of order four, etc. *) Obviously, therefore, it does not

[^5]longer seem to be justified to speak then of stability of mean square.

As an example we consider the pendulum discussed in sec. 1 . Let

$$
\langle\alpha(t)\rangle=0, \quad\langle\alpha(t) \cdot \alpha(s)\rangle=2 D \delta(t-s)
$$

From Eq. (5.2) one finds $\mathbf{a}>0$ as necessary and supficient condition for asymptotic stability of the mean, ie., for

$$
\lim _{t \rightarrow \infty}\langle\Theta\rangle=\lim _{t \rightarrow \infty}\langle\dot{\Theta}\rangle=0
$$

The condition is independent of the stochastic exchtation, and is satisfied only if the motion is damped.

Eq. (5.3) represent three homogeneous equations for the three second-order moments $\left\langle\Theta^{2}\right\rangle$,
$<\boldsymbol{\Theta} \dot{\Theta}\rangle$ and $\left\langle\dot{\Theta}^{2}\right\rangle$. Therefore, for asymptotic stability of the mean square, the eigenvalues of the coefficent matrix must all have negative real parts. This is the case if and only if

$$
a>0 \text { and } a \omega_{0}^{2}>D
$$

Damping is, therefore, necessary whose minimum value is determined by the second condition, depending on the intensity of the motion of the suspension point.

6. Linear Stochastic Equations with Non-White Parameters.

> We consider a stochastic equation of the
form

$$
\begin{equation*}
L u(t)=g(t) \tag{6.1}
\end{equation*}
$$

where $g(t)$ is a given deterministic function, and L denotes a stochastic operator, linear in u and its derivatives. We assume L to depend on a random parameter $z(t)$, with probability density $p(z)$. Hence, $u(t)$ is a random function.

> We shall attempt to obtain differential
equations for the various moments of u, in particular for the expectation $\langle u\rangle$. In doing so we will note, however, that the equation for the moment of one particular order will always contain moments of higher order too. One is, therefore, facing an infinite system of equations, known as "hierarchy equations".

We restrict the operator L to the follow
ing special form

$$
\begin{equation*}
\left[L_{0}+z(t)\right] u(t)=g(t) \tag{6.2}
\end{equation*}
$$

where L_{0} is a deterministic linear operator, and $z(t)$ is a random function. For $z(t)$ white noise we have
then Eq. (4.1), with $\alpha_{1}=\alpha_{2}=0$. Taking expectalion on both sides of Eq. (6.2) we get

$$
\begin{equation*}
L_{0}\langle u\rangle+\langle z(t) u(t)\rangle=g(t) \tag{6.3}
\end{equation*}
$$

Since this equation contains $<\boldsymbol{Z}(t) u(t)>$ as addition al unknown one would, perhaps, be inclined to multiply (6.2) by $z(t)$ and average. This, however, would lead to $\left\langle z L_{0} u>\right.$, and not to $L_{0}<z u>$. We multiply, therefore, by $z(s)$, rather than $z(t)$, and obtain, with $z(s) L_{0} z(t)=L_{0} z(s) z(t)$,

$$
\begin{equation*}
L_{0}<z(s) u(t)>+\langle z(s) z(t) u(t)\rangle=\langle z(s)>g(t) \tag{6.4}
\end{equation*}
$$

After $<\boldsymbol{Z}(\mathrm{s}) \mathbf{u}(\mathrm{t})>$ has been determined from this equation, we could put $s=t$ and substitute into (6.3) to obtain an equation for $\langle u>$. We note, however, that (6.4) contains a new unknown $\langle\boldsymbol{Z}(\mathrm{s}) \mathbf{z}(\mathrm{t}) \mathrm{u}(\mathrm{t})\rangle$. Therefore, we need an additional equation which in turn however, contains new moments, and so on ad infinitum.
One possibility to overcome this difficult
ty consists in the introduction of a moment -generating functional $F\{x, y\}$, see $[8]$,
$F\{x, y\}=\left\langle\exp \int[x(\omega) u(\omega)+y(\omega) z(\omega)] d \omega\right\rangle=$

$$
\begin{equation*}
=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}\left[\exp \int(x(\omega) u(\omega)+y(\omega) z(\omega)) d \omega\right] p(u, z ; t) d u d z \tag{6.5}
\end{equation*}
$$

whose functional derivatives*)
$\frac{\delta^{j+k} F}{\delta x\left(t_{1}\right) \ldots \delta x\left(t_{j}\right) \delta y\left(t_{j+1}\right) \ldots \delta y\left(t_{j+k}\right)}=\left\langle u\left(t_{1}\right) \ldots u\left(t_{j}\right) z\left(t_{j+1}\right) \ldots z\left(t_{j+k}\right) \exp \left[\int(x u+y z) d \omega\right]\right\rangle$
render, for $x=y=0$, the moments

$$
\left.\frac{\delta^{j+k} F}{\delta x\left(t_{1}\right) \ldots \delta x\left(t_{j}\right) \delta y\left(t_{j+1}\right) \ldots \delta y\left(t_{j+k}\right)}\right|_{x=y=0}=\left\langle u\left(t_{1}\right) \ldots u\left(t_{j}\right) z\left(t_{j+1}\right) \ldots z\left(t_{j+k}\right)\right\rangle
$$

As a consequence of

$$
\begin{aligned}
& L_{0} \frac{\delta F}{\delta x(t)}+\frac{\delta^{2} F}{\delta x(t) \delta y(t)}=<\left[L_{0} u(t)+u(t) z(t)\right] \exp \left[\int(x u+y z) d \omega\right]>= \\
& \quad=\left\langle g(t) \exp \left[\int(x u+y z) d \omega\right]>=g(t)<\exp \int(x u+y z) d \omega>\right.
\end{aligned}
$$

one obtains for F the following functional differen tial equation
*) The Fréchet differential $\delta \boldsymbol{F}$ of a functional $F\{x(t)\}$ is defined as

$$
\delta F=\left.\frac{\partial}{\partial \varepsilon} F\{x(t)+\varepsilon \xi(t)\}\right|_{\varepsilon=0}=\int \frac{\delta F}{\delta x(t)} \xi(t) d t
$$

whence the functional derivative $\boldsymbol{\delta} \boldsymbol{F} / \boldsymbol{\delta} \boldsymbol{x}(\mathrm{t})$ may be found.

$$
\begin{equation*}
L_{0} \frac{\delta F\{x, y\}}{\delta x(t)}+\frac{\delta^{2} F\{x, y\}}{\delta x(t) \delta y(t)}=g(t) F\{x, y\} \tag{6.6}
\end{equation*}
$$

Little is known about the solution of this equation*.
A second possibility consists in express ing the moments of higher order in terms of the preceding lower-order moments by introducing certain, more or less arbitrary, assumptions. In this manner one obtains a closed, finite system of differential equations.

$$
\text { Assuming, for instance, }{ }^{* *)} z(t) \text { and } u(t)
$$ to be approximately independent, one has

$$
\begin{equation*}
\langle z(t) u(t)\rangle=\langle z(t)\rangle\langle u(t)\rangle \tag{6.7}
\end{equation*}
$$

Eq. (6.3) then contains only the single unknown <u> and reduces, if $\langle z(t)\rangle=0$, to

$$
\begin{equation*}
L_{0}\langle u\rangle=g(t) \tag{6.8}
\end{equation*}
$$

A comparison with (4.6) shows, that the assumption is exact for white noise coefficients. Keller [8] has proved that it is generally admissible, provided the
*) See, for instance, $[10]$, Chapter 3 .
stochastic part of the operator L is sufficiently small. To show this, we consider the general equation (6.1) with

$$
\begin{equation*}
L=L_{0}+\varepsilon L_{1}+\varepsilon^{2} L_{2}+0\left(\varepsilon^{3}\right) \tag{6.9}
\end{equation*}
$$

where $\boldsymbol{\varepsilon}$ is a small parameter, L_{0} represents a deterministic operator, and L_{1}, L_{2} are stochastic operators.

Let u_{0} denote a particular solution of the deterministic part of Eq. (6.1)

$$
\begin{equation*}
L_{0} u_{0}=g \tag{6.10}
\end{equation*}
$$

Putting, then,

$$
\begin{equation*}
u=u_{0}+\varepsilon u_{1}+\varepsilon^{2} u_{2}+0\left(\varepsilon^{3}\right) \tag{6.11}
\end{equation*}
$$

substituting into Eq. (6.1), using (6.9) and equating to zero the coefficients of ε and ε^{2}, one obtains

$$
L_{0} u_{1}+L_{1} u_{0}=0, L_{0} u_{2}+L_{1} u_{1}+L_{2} u_{0}=0
$$

Multiplication from the left with the inverse operator L_{0}^{-1} renders

$$
u_{1}=-L_{0}^{-1} L_{1} u_{0}, \quad u_{2}=L_{0}^{-1}\left(L_{1} L_{0}^{-1} L_{1}-L_{2}\right) u_{0}
$$

Hence, the solution of (6.1) is, if terms in $\boldsymbol{\varepsilon}^{2}$ are
included,

$$
\begin{equation*}
u=u_{0}-\varepsilon L_{0}^{-1} L_{1} u_{0}+\varepsilon^{2} L_{0}^{-1}\left(L_{1} L_{0}^{-1} L_{1}-L_{2}\right) u_{0}+0\left(\varepsilon^{3}\right) \tag{6.12}
\end{equation*}
$$

Averaging gives for the desired expectation

$$
\begin{equation*}
\langle u\rangle=u_{0}-\varepsilon L_{0}^{-1}\left\langle L_{1}\right\rangle u_{0}+\varepsilon^{2} L_{0}^{-1}\left[\left\langle L_{1} L_{0}^{-1} L_{1}\right\rangle-\left\langle L_{2}\right\rangle\right] u_{0}+O\left(\varepsilon^{3}\right) \tag{6.13}
\end{equation*}
$$

For a comparison with (6.3) we eliminate u_{o}

$$
\begin{aligned}
u_{0} & =\langle u\rangle+\varepsilon L_{0}^{-1}\left\langle L_{1}\right\rangle u_{0}+0\left(\varepsilon^{2}\right) \\
& \left.=\langle u\rangle+\varepsilon L_{0}^{-1}<L_{1}\right\rangle\langle u\rangle+0\left(\varepsilon^{2}\right)
\end{aligned}
$$

and substitute into (6.13)

$$
\langle u\rangle=u_{0}-\varepsilon L_{0}^{-1}\left\langle L_{1}\right\rangle\langle u\rangle+\varepsilon^{2} L_{0}^{-1}\left[\left\langle L_{1} L_{0}^{-1} L_{1}\right\rangle-\left\langle L_{1}\right\rangle L_{0}^{-1}\left\langle L_{1}\right\rangle-\left\langle L_{2}\right\rangle\right]\langle u\rangle+
$$

$$
\begin{equation*}
+0\left(\varepsilon^{3}\right) \tag{6.14}
\end{equation*}
$$

We have now a differential equation for $\langle u\rangle$, which contains u_{o} only in additive form. A different form is obtained by multiplying (6.14) by L_{o} :

$$
\begin{equation*}
\left\{L_{0}+\varepsilon\left\langle L_{1}\right\rangle+\varepsilon^{2}\left[\left\langle L_{1}\right\rangle L_{0}^{-1}\left\langle L_{1}\right\rangle-\left\langle L_{1} L_{0}^{-1} L_{1}\right\rangle+\left\langle L_{2}\right\rangle\right]\right\}\langle u\rangle=g+0\left(\varepsilon^{3}\right) \tag{6.15}
\end{equation*}
$$

Frequently, $<L_{1}>=0$. Eq. (6.15) then simplifies to

$$
\begin{equation*}
\left\{L_{0}+\varepsilon^{2}\left[\left\langle L_{2}\right\rangle-\left\langle L_{1} L_{0}^{-1} L_{1}\right\rangle\right]\right\}\langle u\rangle=g+0\left(\varepsilon^{3}\right) \tag{f.16}
\end{equation*}
$$

Within the order $O(\varepsilon)$ we have, therefore, exactly

$$
\begin{equation*}
L_{0}<u>=g \tag{6.17}
\end{equation*}
$$

which is identical with Eq. (6.8), obtained above Nith the aid of more or less arbitrary assumptions.

Eq. (6.8) may be improved by closing the hierarchy equations at higher moments rather than after the first step. This will be shown for the second step [11]. Consider the equation of linear oscillations with parametric excitation

$$
\begin{equation*}
\ddot{y}+[1+z(t)] y=0 \tag{6.18}
\end{equation*}
$$

Averaging renders

$$
\begin{equation*}
\left(\frac{d^{2}}{d t^{2}}+1\right)\langle y\rangle+\langle z y\rangle=0 \tag{6.19}
\end{equation*}
$$

Instead of making the crude assumption $\langle z y\rangle=\langle z\rangle\langle y\rangle$, we multiply by $z(S)$ as above, and average

$$
\begin{equation*}
\left(\frac{d^{2}}{d t^{2}}+1\right)<z(s) y(t)>+<z(s) z(t) y(t)>=0 \tag{6.20}
\end{equation*}
$$

In this manner we could continue. However, if we wish to stop with (6.20), we close the system by neglecting the dependence between $z(s) z(t)$ and $y(t)$, and put

$$
\langle z(s) z(t) y(t)\rangle=\langle z(s) z(t)\rangle\langle y(t)\rangle
$$

We have now a closed system of two equations

$$
\left.\begin{array}{l}
\left.\left(\frac{d^{2}}{d t^{2}}+1\right)<y(t)\right\rangle+\langle z(t) y(t)>=0 \tag{6.21}\\
\left(\frac{d^{2}}{d t^{2}}+1\right)<z(s) y(t)>+<z(s) z(t)><y(t)>=0
\end{array}\right\}
$$

From the second equation we find, using the impulse response of the system,

$$
\left.\langle z(s) y(t)\rangle=-\int_{0}^{t} \sin (t-\tau)<z(s) z(\tau)\right\rangle\langle y(\tau)\rangle d \tau
$$

where $<z(s) z(\tau)>=R_{z}(s-\tau)$ for stationary $z(t)$. Letting now $5=t$, and substituting into the first of Eqs. (6.21), we obtain the following integro-differ ential equation for the mean $\langle y(t)\rangle$:

$$
\begin{equation*}
\left.\left(\frac{d^{2}}{d t^{2}}+1\right)\langle y(t)\rangle=\int_{0}^{t} \sin (t-\tau) R_{z}(t-\tau)<y(\tau)\right\rangle d \tau \tag{6.22}
\end{equation*}
$$

At the present time, the solution of this equation is only known for certain limiting cases. For instance, if one assumes $\boldsymbol{Z}(t)$ to represent wide-band noise, then its correlation time is very short, and $R_{z}(\tau) d e c r e a s e s$ rapidly with increasing $\boldsymbol{\tau}$. Therefore,

$$
\begin{equation*}
\left|R_{0}\right| \gg\left|R_{1}\right| \gg\left|R_{2}\right| \gg \ldots \tag{6.23}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{n}=\int_{0}^{\infty} s^{n} R_{z}(s) d s \tag{6.24}
\end{equation*}
$$

The right-hand side of Eq. (6.22) may now be expanded in a power series in terms of $S=t-\tau$,

$$
\begin{aligned}
\int_{0}^{t} \sin s R_{z}(s)<y(t-s)>d s & \left.=\int_{0}^{t}\left[s-\frac{s^{3}}{6}+\ldots\right] R_{z}(s)\left[<y(t)>-s \frac{d}{d t}<y(t)\right\rangle+\ldots\right] d s= \\
& =R_{1}<y(t)>-R_{2} \frac{d<y(t)\rangle}{d t}+\ldots
\end{aligned}
$$

and one obtains for $<y(t)>t h e d i f f e r e n t i a l$ equation

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}}<y(t)>+R_{2} \frac{d}{d t}<y(t)>+\left(1-R_{1}\right)<y(t)>=0 \tag{6.25}
\end{equation*}
$$

It can be seen immediately that stability of the mean is determined by the sign of R_{2}. For $R_{2} \geqslant 0$ we have stability, for $R_{2}>0$ we have asymptotic stability while, for $R_{2}<0$, we have instability of the mean.

If $z(t)$ goes over into white noise, then $R_{z}(s)=\delta(s)$, and $R_{1}=R_{2}=\ldots=0$. We then obtain the form of Eq. (4.6).

7. Linear Differential Equations with Constant Random

 Coefficients .The problem of stability simplifies consi derably if the coefficients $f_{i j}$ in the linear differential equations are random constants rather than random functions. In order to obtain conditions for almost sure asymptotic stability, one first computes the Hurwitz determinants, in particular the determinant of order $n-1$, known as Routh discriminant. These determinants are functions of the random coefficients. Therefore, the probability of asymptotic stability (all determinants positive) can be determined. For almost sure asymptotic stability this probability must be equal to one.

As an example, consider the following sys tem of differential equations describing the motion of an airplane with automatic pilot, $[12]$:

$$
\left.\begin{array}{l}
\ddot{\varphi}+M \dot{\varphi}+k \varphi=-N \eta \tag{7.1}\\
\dot{\eta}=\alpha \psi \\
\psi=\varphi+\beta \dot{\varphi}-\frac{\eta}{2}
\end{array}\right\}
$$

All coefficients, with the exception of M, are deterministic positive constants. M is random with χ^{2} - probability distribution (cf. Table II of the

Appendix), with 4 degrees of freedom:

$$
p_{M}(x)= \begin{cases}\frac{1}{4} x e^{-x / 2} & \text { for } x \geqslant 0 \tag{7.2}\\ 0 & \text { for } x \leq 0\end{cases}
$$

Since $\quad \mathbf{a}, \boldsymbol{\alpha} \beta, k, N$, are all positive, a necessary and sufficient condition for asymptotic stability of the system (7.1) is $R>0$, where R is the Routh discriminant,

$$
\left(M+\frac{\alpha}{a}\right)\left(k+M \frac{\alpha}{a}+N \alpha \beta\right)-N \alpha-k \frac{\alpha}{a}>0
$$

With the abbreviations
$\frac{1}{2}\left(\frac{\alpha}{a}+k \frac{a}{\alpha}+N a \beta\right)=A, \quad A^{2}-N(\alpha \beta-a)=B$
the condition may be written as

$$
\begin{equation*}
(M+A)^{2}>B \tag{7.4}
\end{equation*}
$$

The probability that this condition is satisfied, is given by

$$
\begin{equation*}
P\left[(M+A)^{2}>B\right]=\int_{B}^{\infty} q_{(M+A)^{2}}(y) d y \tag{7.5}
\end{equation*}
$$

The roots of $y=(M+A)^{2}$ are

$$
M_{1}=+\sqrt{y}-A, \quad M_{2}=-\sqrt{y}-A
$$

Hence, from Eq. (I - 2.42), taking (7.2) into cons-
deration,
$q_{(M+A)^{2}}(y)=\frac{p(\sqrt{y}-A)}{2\left|M_{1}+A\right|}+\frac{p(-\sqrt{y}-A)}{2\left|M_{2}+A\right|}= \begin{cases}\frac{\sqrt{y}-A}{8 \sqrt{y}} e^{\frac{A-\sqrt{y}}{2}} & \text { if } y \geqslant A^{2} \\ 0 & \text { if } y<A^{2}\end{cases}$
Eq. (7.5) then renders
$P\left[(M+A)^{2}>B\right]=\frac{1}{8} \int_{c}^{\infty} \frac{\sqrt{y}-A}{\sqrt{y}} e^{\frac{A-\sqrt{y}}{2}} d y=e^{\frac{A-\sqrt{c}}{2}}\left(1+\frac{\sqrt{C}-A}{2}\right)$
where

$$
\begin{array}{llll}
C=B, & \text { if } & B>A^{2} \\
C=A^{2}, & \text { if } & B \leq A^{2}
\end{array}
$$

We have $P<1$ in the first case, while in the second case, $P=1$. Therefore, the latter case corresponds to almost sure asymptotic stability.

8. The Problem of First Passage .

In the preceding discussions of stability we have required for a system to be stable that its motion, as caused by a short initial disturbance, remain bounded for all time $t>0$. This condition is,
under circumstances, too strong for practical applica tions. Frequently,it suffices to have the system remain within a prescribed region of motion or ampli tude for a finite time only or, in other words, to have the rate of increase of the amplitudes sufficient ly low. This consideration leads to the problem of reaching a prescribed boundary, or of passing through it for the first time.

Let the behavior of the system be descri bed, exactly or approximately, by a finite number of generalized coordinates $q_{1}(t), q_{2}(t) \ldots q_{n}(t)$. In the phase space spanned by the $2 n$ coordinates $q_{1}(t) \ldots q_{n}(t)$, $\dot{q}_{1}(t) \ldots \dot{q}_{n}(t)$, a position of equilibrium corresponds to a fixed point, while, for a moving system, the image point describes a curve.

Now, let a region R in the phase space, called "admissible region of motion", be bounded by the hypersurface S, Fig. 5.2. As long as the image point of the system moves within this region we call its behavior stable. Once it leaves the region we consider this to be equivalent to failure.

Fig. 5.2

We denote by $U(t \mid x ; 0)$ the probability that the image point, after having started in $x=\left(q_{1} \ldots q_{n}, \dot{q}_{1} \ldots \dot{q}_{n}\right)$ at time $t=0$, does not
leave the admissible region
R within time $t \quad U$ is
thus a measure of the reliability of the system.
The probability

$$
\begin{equation*}
H(t \mid x ; 0)=1-U(t \mid x ; 0) \tag{8.1}
\end{equation*}
$$

represents the probability of first passage, i.e., the probability for the image point to pass through boundary S for the first time within the time-interval $[0, t]$, after having started at x at time $t=0$.

Let $h\left(x_{s} ; t \mid x ; 0\right)$ denote the probabi lity density corresponding to (8.1), where $\boldsymbol{x}_{\mathrm{s}}$ are the phase coordinates of a point on the hypersurface S. The quantity $h\left(x_{s} ; t \mid x ; 0\right) d S d t$ then represents the probability for the first appearance of the image point on the surface element $d S$ with outward velocity, within the time-interval $(t, t+d t]$. Therefore

$$
\begin{equation*}
H(t \mid x ; 0)=\int_{0}^{t} d \tau \oint_{S} h\left(x_{s} ; \tau \mid x ; 0\right) d S \tag{8.2}
\end{equation*}
$$

Now, if $p\left(x ; t \mid x_{0} ; 0\right)$ denotes the transition probability of the process $\boldsymbol{x}(\mathrm{t})$, assumed to be Markov, one easily finds for $h\left(\boldsymbol{x}_{s} ; \boldsymbol{r} \mid \boldsymbol{x} ; 0\right)$ the following integral equation, cf. Fig.5.2,

$$
\left.\begin{array}{c}
p(y ; t \mid x ; 0)=\int_{0}^{t} d \tau \oint_{S} h\left(x_{s} ; \tau \mid x ; 0\right) p\left(y ; t \mid x_{s} ; \tau\right) d S \\
x \in R, \quad x_{s} \in S, \quad y \notin R
\end{array}\right\} \text { (8.3) }
$$

which corresponds to the Chapman - Kolmogorov equation (I - 9.4). Also, an equation may be set up for U, [13], as the analogue of the Fokker - Planck equa tion (I - 9.16) of the process $x(t)$,
$\frac{\partial U}{\partial t}=\sum_{i} f_{i} \frac{\partial U}{\partial x_{i}}+\sum_{k} \sum_{r} D_{k r} \sum_{i} \sum_{j} h_{i k} h_{j r} \frac{\partial^{2} U}{\partial x_{i} \partial x_{j}}$

It differs from (I - 9.16) in that the right-hand side is to be replaced by its adjoint expression. If the "physical" Fokker-Planck equation is used the corresponding changes have to be made in (8.4). For initial condition one has

$$
\begin{equation*}
\lim _{t \rightarrow 0} U(t \mid x ; 0)=1 \tag{8.5}
\end{equation*}
$$

ar: or boundary condition

$$
\begin{equation*}
\lim _{x \rightarrow x_{s}} U(t \mid x ; 0)=0 \quad \text { for } \quad \sum_{i=1}^{2 n} \dot{x}_{i} n_{i}>0 \tag{8.6}
\end{equation*}
$$

since a crassing of the boundary surface S can only occur if the image point has a velocity component in the direction of the positive surface normal n, cf. Fig. 5.2.

A solution to problems (8.4) - (8.6) is
not known at the present time. A numerical solution of the integral equation (8.3) for a special case was given by Parkus and Zeman $[14]$.

From (8.4) a differential equation may be obtained for the expectation $T \equiv<t>$ of first passage time. Putting

$$
\begin{equation*}
\frac{\partial H}{\partial t}=-\frac{\partial U}{\partial t}=\oint_{S} h\left(x_{s} ; t \mid x ; 0\right) d S=\boldsymbol{v}(t \mid x ; 0) \tag{8.7}
\end{equation*}
$$

we note that the same differential equation (8.4) is valid for both U and ϑ, and we have

$$
\begin{equation*}
T=\int_{0}^{\infty} t v(t \mid x ; 0) d t \tag{8.8}
\end{equation*}
$$

Replacing, therefore, U in Eq. (8.4) by , multiplying by t, and integrating, one obtains, taking the relation

$$
\int_{0}^{\infty} t \frac{\partial v}{\partial t} d t=-\int_{0}^{\infty} \downarrow d t=-1
$$

into consideration, the following differential equation for T

$$
\begin{equation*}
\sum_{i} f_{i} \frac{\partial T}{\partial x_{i}}+\sum_{k} \sum_{r} D_{k r} \sum_{i} \sum_{j} h_{i k} h_{j r} \frac{\partial^{2} T}{\partial x_{i} \partial x_{j}}=-1 \tag{8.9}
\end{equation*}
$$

with $T=0$ on the boundary S. Eq. (8.9) is known as the Pontryagin differential equation, $[15]$. Approxi mate solutions of this equation, obtained with the aid of the Galerkin method, are given by Bolotin, $[15]$.

Approximation formulas for $\boldsymbol{\vartheta}$, for special

 cases, have been given in the literature. Let $n_{\dot{a}}^{+}(t)$ denote the mean number of passages per unit time, with positive velocity, through $\boldsymbol{x}=\mathrm{a}$, cf. Eq. (IV-1.1),$$
\begin{equation*}
n_{a}^{+}(t)=\int_{0}^{\infty} \eta p(a, \eta ; t \mid x, \dot{x} ; 0) d \eta \tag{8.10}
\end{equation*}
$$

Then, approximately, $[16]$,

$$
\begin{equation*}
\boldsymbol{v}(a ; t \mid x, \dot{x} ; 0)=n_{a}^{+}(t) \exp \left[-\int_{0}^{t} n_{a}^{+}(\tau) d \tau\right] \tag{8.11}
\end{equation*}
$$

If the process $x(t)$ has already become stationary, $n_{a}^{+}(t)=n_{a}^{+}=$const, and Eq. (8.11) goes over into

$$
\begin{equation*}
v(a ; t \mid x, \dot{x} ; 0)=n_{a}^{+} e^{-n_{a}^{+} t} \tag{8.12}
\end{equation*}
$$

This is known as the exponential distribution, cf. Table II of the Appendix.

Literature .

$[1]$ W.W. Bolotin: Kinetische Stabilität elastischer Systeme. VEB Deutscher Verlag der Wissenschaften, Berlin 1961 .
[2] F. Kozin: A survey of stability of stochastic systems. Automatica 5 (1969), 95 .
[3] F. Kozin: On almost sure stability of linear sys tems with random coefficients. J.Math.Phys. 42 (1963), 59.
[4] E.F. Infante:On the stability of some linear nonautonomous random systems. J.Appl. Mech. 35 (1968), 7 .
[5] A.H.Gray, Jr.: Behavior of linear systems with random parametric excitation. J.Acoust.Soc.America 37 (1965), 235 .
[6] P.W.U. Graefe: On the stabilization of unstable linear systems by white noise coefficients. Ing.-Arch. 35 (1966), 276.
[7] J.L. Bogdanoff and F.Kozin: Moments of the output of 1 inear random systems. J.Acoust. Soc.America 34 (1962), 1063 .
[8] J.B.Keller: Stochastic equations and wave propaga tion in random media. Proc. Symposia App1. Math., vol.XVI, 1964,p.145.
[9] W.E. Boyce: A "dishonest" approach to certain
stochastic eigenvalue problems.
SIAM J. Appl. Math. 15 (1967), 143.
[10] M.J.Beran: Statistical Continum Theories. Inter science Publishers, New York 1968.
[11] J.M.Richardson: The application of truncated hí erarchy techniques in the solution of a stochastic linear differential equation.Proc.Symposia Appl.Math., vol.XVI, 1964,p.290.
[12] Helga Bunke: Stabilität bei stochastischen Diffe rentialgleichungssystemen. Z.ang. Math. Mech. 43 (1963), 63.
[13] M.Kac: Probability theory. Proc. 1-st Symposium on Engineering Applications of Random Function Theory and Probability (J.L. Bogdanoff and F. Kozin, editors). J. Wiley and Sons, New York 1963, p.37.
[14] H.Parkus and J.L.Zeman: Some stochastic problems of thermoviscoelasticity. Proc. IUTAM Symposium on Thermoinelasticity. Glasgow 1968 (under press)
[15] V.V. Bolotin:Statistical aspects in the theory of structural stability. Proc.Int.Conf. on Dynamic Stability of Structures. (G.Herrmann, editor) Pergamon Press, New York 1967, p. 67.
[16] J.R.Rice and F.P.Beer: First-occurrence time of high-level crossings in a continuous random process. J.Acoust.Soc.Ameri ca 39 (1966), 323 .

```
C H A P T E R VI
```


SYSTEM OPTIMIZATION .

In this chapter we consider a linear, open loop, deterministic transfer system, Fig. 6.1.

The ideal system $g(t)$ transforms the undisturbed random test signal $u(t)$ into $z(t)$. The actual system $h(t)$, to be optimized, transforms the distorted signal $x(t)=$ $=u(t)+v(t)$, where $v(t)$ is random noise, intoy (t). We wish to have $y(t)$ "as close as possible" to $z(t)$ by minimizing the mean square error (dispersion D):

$$
D=\left\langle\varepsilon^{2}(t)\right\rangle=\left\langle[z(t)-y(t)]^{2}\right\rangle=\min .
$$

Since we want to eliminate the perturbation noise $v(t)$ from $y(t)$ we speak of filtering or smoothing.

$$
\text { If } z(t)=u(t+\tau) \text {, we have the case of }
$$ extrapolation or prediction where the future values

of $u(t)$ are to be predicted from those of the past.
If

$$
z(t)=\frac{d^{k} u(t+\tau)}{d t^{k}}
$$

we have the case of differentiation.

1. The Wiener-Hopf Equation .

We assume the random processes $u(t)$ and $v(t)$ to be stationary with zero mean and known autocorrela tion and crosscorrelation. Furthermore, we assume that $\boldsymbol{x}(\mathrm{t})$ has been observed through an unlimited period $(-\infty, t]$ preceding, and up to, time t.

Using the impulse response $h(t)$ of the sys tem we have for the dispersion, see (I - 5.20),

$$
\begin{equation*}
D=\left\langle\left[\int_{0}^{\infty} h(\tau) x(t-\tau) d \tau-z(t)\right]^{2}\right\rangle \tag{1.1}
\end{equation*}
$$

or, upon squaring,

$$
\begin{equation*}
D=\int_{0}^{\infty} h(s)\left[\int_{0}^{\infty} h(\tau) R_{x x}(s-\tau) d \tau-2 R_{z x}(s)\right] d s+R_{z z}(0) \tag{1.2}
\end{equation*}
$$

$h(t)$ has to be determined such as to make D a minimum. To solve this variational prohlem we replace $h(t)$ by
the expression

$$
h(t)+\alpha \eta(t)
$$

and require

$$
\left.\frac{\partial D}{\partial \alpha}\right|_{\alpha=0}=0
$$

whence

$$
\int_{0}^{\infty} \eta(s)\left[\int_{0}^{\infty} h(\tau) R_{x x}(s-\tau) d \tau-R_{z x}(s)\right] d s=0
$$

From the fundamental lemma of the calculus of variaLions we get

$$
\begin{equation*}
\int_{0}^{\infty} h(\tau) R_{x x}(t-\tau) d \tau-R_{z x}(t)=0 \tag{1.3}
\end{equation*}
$$

for $t \geqslant 0$, corresponding to the interval of integraton of s.

Eq. (1.3) is known as the Wiener-Hopf integral equation for the optimal impulse response $h(t)$. Due to the fact that it is valid for nonnegative t only, its solution is not straightforward.
If (1.3) is substituted into (1.2) one ob- thins for the minimum dispersion

$$
\begin{equation*}
D_{\text {min }}=R_{z z}(0)-\int_{0}^{\infty} h(s) R_{z x}(s) d s \tag{1.4}
\end{equation*}
$$

2. Solution of the Wiener-Hopf Equation .

We first transform to spectral densities using Eq. (I - 5.17), and introduce the frequency response

$$
F(\omega)=\int_{0}^{\infty} h(\tau) e^{-i \omega \tau} d \tau
$$

Eq. (1.3) then goes over into
$\int_{-\infty}^{+\infty}\left[F(\omega) S_{x x}(\omega)-S_{z x}(\omega)\right] e^{i \omega t} d \omega=0 \quad$ For $t \geqslant 0$
To solve this integral equation for the optimal frequency response $F(\omega)$ we employ the following results from complex function theory:

Let $\Phi^{+}(\zeta)$ be a function without poles in the upper half complex plane $\eta \geqslant 0$, where $\zeta=\xi+i \eta$, and let $\Phi^{-}(\zeta)$ be a function without poles in the lower half plane $\eta \leqslant 0$. Then

$$
\left.\begin{array}{ll}
\int_{-\infty}^{+\infty} \Phi(\xi) e^{i \xi t} d \xi=0 & \text { if } t<0 \tag{2.2}\\
\int_{-\infty}^{+\infty} \Phi^{+}(\xi) e^{i \xi t} d \xi=0 & \text { if } t \geqslant 0
\end{array}\right\}
$$

The proof may easily be given using the calculus of residues and closing the integration path by semicircles, with $R \rightarrow \infty$, in the lover and upper halfplanes, respectively. A condition on $\Phi(\zeta)$ is appropriate behavior for $|\zeta| \rightarrow \infty$. Since it will be assumed in the following that $\Phi(\zeta)$ can be represented as a Fourier integral,

$$
\begin{equation*}
\int_{-\infty}^{+\infty}|\Phi(\xi)|^{2} d \xi<\infty \tag{2.3}
\end{equation*}
$$

will be valid, and the condition will be satisfied.
The second of Eqs. (2.2) is identical with Eq. (2.1). Hence, the function

$$
\begin{equation*}
\Phi^{+}(\xi)=S_{z x}(\xi)-F(\xi) S_{x x}(\xi) \tag{2.4}
\end{equation*}
$$

must not have any poles in the upper half-plane.
We assume the optimal system to be stable.
Therefore, its transfer function $Y(s)$,

$$
Y(s)=\int_{0}^{\infty} h(t) e^{-s t} d t
$$

cannot have poles with positive real parts of S. But, since $F(\omega)=Y(i \omega)$, it follows that $F(\omega)$ cannot have poles with negative imaginary parts of $\boldsymbol{\omega}, \quad F(\boldsymbol{\omega})=\mathrm{F}^{-}(\boldsymbol{\omega})$. Eq. (2.4) may now be written as

$$
\begin{equation*}
\Phi^{+}(\xi)+F^{-}(\xi) S_{x x}(\xi)=S_{z x}(\xi) \tag{2.5}
\end{equation*}
$$

Spectral density $S_{x x}(\zeta)$ will, in general, have poles both in the upper and lower half-plane. In many instances, however, it is possible to represent $S_{x x}$ as the product of a function $S^{+}(\xi)$ and a function $S^{-}(\zeta)$, without poles in the upper and lower half-plane, respectively:

$$
\begin{equation*}
S_{x x}(\xi)=S^{+}(\xi) S^{-}(\zeta) \tag{2.6}
\end{equation*}
$$

This can be done in a particularly simple manner, if $S_{x x}$ is the quotient of two polynomials*).

Eq. (2.5) may now be written as

$$
\begin{equation*}
\frac{S_{z x}(\xi)}{S^{+}(\xi)}=\frac{\Phi^{+}(\xi)}{S^{+}(\xi)}+F^{-}(\xi) S^{-}(\xi) \tag{2.7}
\end{equation*}
$$

We have thus resolved the function $S_{z x}(\xi) / S^{+}(\xi)$ into two parts, the first representing the value, along the real axis, of a function analytic in the upper half plane, and the second representing the value, along the real axis, of a function analytic in the lower half plane. Now, such a resolution may, however, also be obtained with the aid of the Fourier transform. Indeed, for a function $\Phi(\xi)$ satisfying (2.3),
$\Phi(\xi)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-i \xi t} d t \int_{-\infty}^{+\infty} \Phi(\omega) e^{i \omega t} d \omega=\frac{1}{2 \pi}\left[\int_{-\infty}^{0-} e^{-i \xi t} d t+\int_{0^{+}}^{\infty} e^{-i \xi t} d t\right] \int_{-\infty}^{+\infty} \Phi(\omega) e^{i \omega t} d \omega$

[^6]whence at once
\[

\left.$$
\begin{array}{l}
\Phi^{-}(\xi)=\frac{1}{2 \pi} \int_{0+}^{\infty} e^{-i \xi t} d t \int_{-\infty}^{+\infty} \Phi(\omega) e^{i \omega t} d \omega \tag{2.8}\\
\Phi^{+}(\xi)=\frac{1}{2 \pi} \int_{-\infty}^{0-} e^{-i \xi t} d t \int_{-\infty}^{+\infty} \Phi(\omega) e^{i \omega t} d \omega
\end{array}
$$\right\}
\]

For a proof it suffices to substitute Eqs. (2.8) into (2.2), and to use the delta function representation

$$
\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{i(t-\tau) \xi} d \xi=\delta(t-\tau)
$$

Upon replacing now the right-hand side of Eq. (2.7) by its Fourier transform, and equating the -parts on both sides one obtains

$$
\begin{equation*}
F(\omega)=\frac{1}{2 \pi S^{-}(\omega)} \int_{0+}^{\infty} e^{-i \omega t} \int_{-\infty}^{+\infty} \frac{S_{z x}(\alpha)}{S^{+}(\alpha)} e^{i \alpha t} d \alpha d t \tag{2.9}
\end{equation*}
$$

This equation determines the optimal frequency response.

Literature .

[1] A. Papoulis: Probability, Random Variables and Stochastic Processes. Mc Graw-Hill Book Comp. New York 1965.
[2] A.A. Sweschnikow: Untersuchungsmethoden der Theorie der Zufallsfunktionen. Teubner, Leipzig 1965.

Additional material from Random Processes in Mechanical Sciences, ISBN 978-3-211-81086-6, is available at http://extras.springer.com

[^0]: A general formula can be given for the probe

[^1]: ${ }^{*)}$ See also Chap. V, section 8. A generalization is given in $[5]$.

[^2]: *) Indeed, probability 0.1, for instance, means that in the course of 1 second, the event is to be expect ed to last 0.1 second.

[^3]: ${ }^{*}$) They are certainly orthogonal, cf. Eq. (I-5.8).

[^4]: *) For further details refer to $[6]$ and $[8]$.

[^5]: *) cf. section 6 .

[^6]: *) For a more general case, see [2], p.136.

