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III 

P P e f a c e 

This monogPaph contains 3 with a few addi 
tions and extensions 3 my lectuPes given at the InteP 

national CenteP foP Mechanical Sciences in Udine duP 
ing the month of OctobeP 3 1969. 

IntePest in application of the theopy of 
Pandom pPocesses to mechanics has been gPowing stea~ 
ily duPing the last decade. Indeed 3 thePe can be no 

doubt that many pPoblems of pPactical intePest call 
foP a pPobabilistic intePpPetation. FPequently 3 fopces 3 

tempePatuPe OP otheP extePnal agencies acting on a 
mechanical system cannot be considePed to be given 
in a detePministic sense. A well known example is the 
motion of an aiPplane thPough tuPbulent aiP. FuPthe~ 

~ore~ the geometry of a structuPe may be subject to 
Pandom "impePfections"~ and matePial propePties may 
show random deviations fPom theiP assumed values. 

Obviously~ it is impossible to pPesent~ 
in a Pelatively shoPt coupse of a few weeks duPation~ 
all aspects of this highly complex subject. It is my 

hope~ howeveP 3 that I have succeeded~ to some extent 
at least~ in alePting my patient audience to a new 

field of immense impoPtance~ and in paving the way fer 

them to individual fuPtheP study. 

ChapteP I pPesents those paPts of probabi 
lity theopy which~ in my opinion~ constitute the mai~ 
tools foP application. The chapteP can also serve as 
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a handy refe~ence source. Chapter II treats linear 
random vibrations and discusses linear differential 
equations with random driving functions. Chapter III 
is a very brief account of some nonlinear problems, 
while in Chapter IV the results of Chapter II and III 
are applied to the problem of probabilistic failure 

of structures. Chapter V is devoted to stochastic st~ 

bility and to linear differential equations with par~ 

metria excitation. The final Chapter VI presents a 

brief account of optimization of linear systems wit~ 

out feedback. 
It is my pleasant duty to record here my 

sincere thanks to the authorities of CISM for their 
invitation to present these lectures. In particular 
and above all, I would like to thank my dear friend 
Professor Luigi Sobrero. Without him CISM would not 

be in existence. 
My thanks are also due to Prof. W.OZszak, 

Rector of CISM, to whom I owe so much. Dr. H.Bargmann, 
Dipl. Ing. H.Kastl, Dr. J.L.Zeman and Dr. F.ZiegZer 

have spent much time and effort on proofreading and 

have made many valuable suggestions. 

H. Parkus 
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1 

C H A P T E R I 

ELEMENTS OF PROBABILITY THEORY . 

The abstract measure - theoretical develo~ 

ment of probability theory during the last three dec­

ades, initiated by Kolmogorov [1] , [2] is, for appli:_ 

cations to physical problems, neither necessary nor 

even desirable. Therefore, no use is made of it in the 

following brief summary of basic definitions and for 

mulas of probability theory. 

1. Definitions of Probability . 

(a) The definition by R. von Mises. Let 

an experiment with random outcome be given, and let 

it be performed n times. 

If, among these n trials, the event E 
appears n E times probability P [E] for E to occur 

is defined as the limit of the relative frequency 

P [E] = hm (1. 1) 
n--oo 

This definition of probability turns out 

to be very well suited, if not essential, for appli­

cations since it is based on experiment. It is, ther~ 

fore, the one mostly used - explicitly and, sometimes, 

implicitly- by engineers and physicists. Nevertheless, 

for the axiomatic foundation of probability the defi 
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nition by Kolmogorov as given below appears to be 

superior. One main obiection is, of course, that the 

limit (1.1) can, in reality, never be determined and 

that assuming its ~xistence in fact constitutes al­

ready a hypothesis. 

(b) The Kolmogorov definition LS based on three axLoms. 

For their formulation some preliminary concepts are 

needed. 

Let S be the sure (certain) event, ap­

pearing at every trial. The set S ("sample space") 

contains as elements all possible outcomes of the 

trial. A subset EcS is called an event. The empty 

set 0 (which does not contain any outcome at all) 1s 

the impossible event. Denote by ~ 1 , ~2. .. ·~nthe possible 

outcomes of the experiment (assumed to be finite for 

the time being). Then 

If at a certain trial the outcome ~~ appears we say 

that those events E occurred which contain ~t as el 

ement. 

The complementary event E of E is the 

set of elements in S which are not in E . Obviously: 

if E occurs E can not occur. 

The union E1 U E2 occurs if either E1or E2., 

or both, occur since E1 U E2. contains all elements that 
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are in E1 or ~n Ea or in both. 

The intersection E1 n Ea occurs if both E1 

nnd E2 occur. If E 1 n Ea = flf the two events are mutual 

ly exclusive. 

We now define the probability P [E] of an 

event E as a real number satisfying the following 

three axioms 

(I) P [E] ~ 0 

(n) P [s] = 1 

"nonnegativity" 

"normalization" 

provided the En are 

mutually exclusive,i.e. 

E t n E} = 0 for ~ * k 
"additivity" 

From these axioms we conclude immediately 

P[E]=1-P[E], P[¢]=0 (1. 2) 

Furthermore, 

(1. 3) 

For a proof we write E1 U E2 and E2 as the union of tvo 

mutually exclusive events 

E1UE2=E1u(E1nEa) , E2=(E1nE2)u(E1nE 2 ) 

and use axiom III 
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Fig. 1.1. 

~n (1.3) one has 

It must be emphasized, however, that the converse of 

P [5] • 1 and P[-9']= o is not true! Probability 1 

does not mean that the event will certainly occur, 

and probability 0 does not mean that the event can 

not occur. 

One can easily show that the probability 

defined by (1.1) satisfies all of the three axioms. 

By a fourth axiom we introduce the so-

-called "conditional probability" P [e I E~J . This 

is the probability for E occurring if one knows 

that E1 will occur 

(IV) (1. 4) 

P[E] is sometimes called "absolute probability". 

We call two events E1 and E2 (statistically) 
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independent if 

(1. 5) 

provided P[EJ=t=O and P [E J =t= 0 . I t f o 11 ow s t h a t 

If two events are independent so are their compleme~ 

tary events. 

2. Random Variables . 

To each outcome ~ of the experiment we 

adjoin a rea 1 number X ( 0 such that 

(a) the set {X EX} represents an event E 
for each real number X , and 

(b) the probability of the events {X= :too} 
is zero: 

P[x=:too] = 0 (2.1) 

X(~) is called random variable. 

It follows from property (a) that the set 

{ X1 <X ~ X2 } also represents an event. Indeed 

{x~X1} u{X1<x ~x2} ={x =e x2.} 
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The distribution function Fx(X):: F (X) 
of the random variable X is defined by 

F(X)• P[xsX] (2.2) 

Similarly, for a multidimensional random variable 

X ::: l 'Xi , X 2 • • • 'X n) 

F ( X1 1 X 2 ••• X n) = P ~ 1 $ X 1 J X2.~ X 2 , ••• x. n ~ X n.] (2.3) 

A random variable is called discrete if 

the probability 

( 2. 4) 

is different from zero only on a countable set of val 

ues X~ (the spectrum of X), and 

~ p (X ~) = 1 C 2 • s ) 
Xj, 

The corresponding distribution function LS then given 

by 

F(X)=P[x~XJ= ( 2. 6) 

A random variable is called continuous 

if its distribution function is continuous and pos­

sesses a piecewise continuous derivative p(X) 
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dF 
dX = p (X) ' 

X 

P [x E X J = F (X) = j p ( :x:) ci:x: 
b -QO 

P(!<x~bJ= jp(:x:)d:x. 
a 

+oo I p (X) d-x. = F ( 00) = 1 
~oo 

p(X)is called probability density. 

The moments of X are defined by 

+00 

( 2. 7) 

resp. mn{x}=/:x:np(:x:)dx 
-oo 

(2..8) 

The first moment is called expectation (statistical 

mean), the second moment represents the variance. A 

short summary follows. 

The Most Important Functionals of a "Random Variahle 

Expectation 

Discrete 

rn= E{:x.} = < :x.::.. = 

7 
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Continuous +~ 

E { x} = < :x. > = [ x p ( x) d.x = m 
-~ 

+~ 

E { f ( x.)} = < f ( x.) > = j f (.x) p ( x) dx 
-ao 

E is a linear operator: E{xTy}=E{x}-t E{y}; E{cx.} =c.E{x} 

Variance 0" 2 

} Var{x}= a- 2= E{(x-m)~=£{x2}-ma 
mean square <r (2.9) Root 

Discrete Continuous 

+co 

o-2= [ex- m/ p (x) dx 
-ao 

It follows 

Tschebyschev Inequality 

( a > 0 ) ( 2 • 1 O') 

Proof: 

1-QO 

tS 2 =fix. -m) 2 p ( x) dx ~ /C x- m) 2 p ( x) dx ~ a 2 j p ( x) d:x = 
-ao !x-ml>a lx-ml>a 
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Bienayme Inequality 

(2.11) 

For a proof see @] , p. 151. 

Several Random Variables. Two Variables u. and '\r. 

Joint probability F(x,y) 

(a) Continuous 

X. y 

F ( ;x; • y) = p [u. ~ X } '\r ~ y J : I I p ( ; I '11) d ~ d 11 
-go -00 

We have 
X. JC +00 

p [u. =e X J • I p (~)d.~ = I d.~ I p ( ~ I il) d.ll 
-oo -oo -oo 

Moments~ 

+oo +oo 

m~k = E { u.i- v'<}• I I x.tyk p(x,y) d.xd.y (2.12) 
-oo -oo 

In particular 

'tOO +00 

m2 , 0 = E { u.2 } =I I x 2 p(x.y) dx dy (2.13) 
-oo -oo 
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+GO +GO 
Crosscorrelation 

m 1, 1 = E { u. v} = j J x Y p (:X, y) cl~ d.y function (2.14) 
-GO -oo 

+OD +OD 

m0, 2 = E{ V 2 }= J j lp(x,y) d:x.d.y (2.15) 

- ao -ao 

+OO +00 

E { f ( u., v)} = J d.x J f ( x, y) p ( x, y) d y (2.16) 
-ao -oo 

(b) Discrete 

(2.17) 

(2.1A) 

(2.19) 

Conditional Probability 

(2.20) 
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~1on~·n t s 

(2.21) 

In particular 

m2,0 = E {u!} = ~ ~ X~ P· · 
~ ~ ~ Lk 

m0 2.=E{v2} =l: !:y~p .. 
, • • } L L 

L k a 

(2.22) 

Similarly for n. random variables with 

[ (~) U) (s)J P U1=X 1 ,u.2.=X2. •• Un=X~ = P· · .. 
•• L • i • • • ., 

Characteristic Function 

+00 

<p(q)= /e~qxp(x)d:x (2.23) 
-QO 

where q is a real number,-oo < q <-too 

The probability distribution 1s uniquely 

defined by the characteristic function: 

+Q +oo 

p(XJ=t~m 21Q je-tqX'rp(q)d.q' 
Q -+-CXI -Q 

p(X)= 21xfe-lqXq>(q)dq (2.24) 
-ao 

Therefore, in the continuous case, p(x)is the Fourier 

transform of cp(q). 

For a multidimensional random variable, 
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Eq (2.3), we have 

(~. 25) 

+ao +oo 

= J .. . jexp [L(q1 X 1 + .•. 'lnxn)]P (x-1, .•. Xn) dX.1·. ·• · dxn. 
-ao -ao 

{ 
( 1) (l) } 

where X.~ 1 X ~ . • . represents the spectrum of the 

discrete random variable x~ . 

Jointly distributed (multidimensional) 

random variables X 1 1 X2. ... Xn. are called independent, 

cf. Eq. (1.5), if 

(2.26) 

and, hence, also 

(2.27) 

For the characteristic function one has 

(2.28) 
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and for the expectations, with arbitrary functions 

f1 (x1) ... f11(x11) , 

(2.29) 

Two jointly distributed random variables x 1 

and x 2 are called uncorrelated if their covariance 

Cotr { X 1 ,xz.} vanishes, where 

(2.30) 

Frequently, the correlation coefficient e1z. is used 

(2.31) 

which is then zero for uncorrelated variables. 

Two independent variables are also uncorre­

lated. The converse is not necessarily true. 

If, for two variables x andy , 

(2.32) 

they are called orthogonal. 
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The probability distribution of the sum 

z = X+ y of two independent random variables x and 

y ,with densities f (X) and 9 (Y) , is given by the convo 

lution integral 

-+-oo -+-oe 

p(Z) = J f(x)q(Z-x.)dx=Jf(Z-x)g(-x)dx (2.33) 
-00 

P r o o f : The char a c t e r i s t i c f u nc t ion o f l i s , w i t h 

(2.29), 

Ci'z(q) = E { eLq(:x: ... y)} = <p:x.(q) <py(q) 

Hence, from (2.24) and (2.23) 

+- +- +-

- ;'T£ J f(:x.) J e-Lq(Z-x) fPy(q)dq d:x. = J F(x) g(Z-x) d:x. 

-oo -OC -oe 

Additional Remarks 

(a) If X and y are normally distribut-

then Z is normal with 

mean m + n and variance 0'2. + i 2.. 

(b) If X and y have binomial distri-
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butions with parameters n, p and m, p ,respectively, 

then i! is binomial with parameters 1'\ + m , p . 

(c) If X 

with mean values Ax 

and y are Poisson distributed 

and A.y, respectively, then i! 

~s Poisson distributed with mean Ax+ Ay • 

(d) If X and y are negative binomial 

distributed with parameters k:x:, p and ky , p respe~ 

tively, then i! is negative binomial with parameters 

kx + ky , p . 

(e) If X and y are gamma distributed 

with parameters n , A and m respectively, 

then i! is gamma distributed with parameters n ... m ,A. 

Central Limit Theorem. Let X 1 , X 2 ... Xn be independ­

ent random variables with arbitrary probability di-

stributions, mean values mt and variances The 
sum 

~s then normal 

and variance 

for n ---- 00 

exist such that 

distributed with mean 
n 

m = l: m~ 
i =1 

provided two positive numbers ~ and b 

for all L = 1 '2 ... 
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Multidimensional Distributions 

Two-dimensional Normal Distribution 

p ( :x..y) = 1 exp { - ~ r (x-m r-2 e x-m .t:.!!. + (~ YJ} 
2no--rV1-e2 2 (1-e2) ~ cr (j -r 1" 

(2.34) 
where 

For X, y independent one has p (x,y) • p (:x.) p (y) 
ancl, hence, e-O. 

N-dimensional Normal Distribution. 

(2.35) 

where 

for i==k 

form the 1'l x n matrix of the central moments, I Ai.kl 
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is the corresponding determinant, and P.~k are the el­

ements of the inverse matrix. 

N-dimensional Poisson Distribution. 

Ax, '\X1 ..,xn 
" ll.z • • · ,.. n 

X1! Xz! ... Xn! 
(2.36) 

Conditional Expectation, Conditional Variance 

and Conditional Distribution of a Normal Random Vari­

able. 

Let x and y be tw·o normal random variables 

with zero expectations and let l = y-ax be orthogonal 

to X 

whence 

u = (2.37) 

Since 2 too is normal with zero mean, :x: and l are not 

only orthogonal but also uncorrelated and, in addition, 

independent, cf. (2.34). Hence 



www.manaraa.com

18 Chap. I - Elements of Probability Theory -

But tt) 

Therefore 

(2.38) 

with« from (2.37). 

For the determination of the condition­

al variance one has first 

Var{ ylx} = Var{ z1x} .. E {(y-cn:.)~l x} = E{(y-ax)''} 

since y- «X is independent of X . Expansion, taking 

(2.37) into account, renders 

(2.39) 

w) The conditional probability of a random variable 

is, by extending axiom (1.4), defined as 

F (xI r)- P[ x ~ xI £ J = P [( x "X) n E] 
P[E] 

provided 

P[E] =1= o 
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or, using the notation of (2.34) 

(2.40) 

The conditional probability density is, therefore, 

ex p [- _(_y_-_co_c) -2 ] 

2. ( 1- Q<-)-ra 

Functions of One Random Variable. 

(2.41) 

In order to determine the probability dis­

tribution P[y~YJ of a function y= f(:x:) of the random 

variable X from P [:x: ::X], equation y=f(x) has to be 

solved for X • 

Example 

From 

one has at once 

for Y~O and P[y~YJ= 0 for Y<O 

A general formula can be given for the prob~ 
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bility density q (Y) . Let :X:-1 , x. 2 ••• Xn· .. be all real 

roots of the equation f(x),. y. Then 

Proof: 

y 

:X· L 

Fig. 1.2 

X. 

(2.42) 

q ( y) d.y "' p [ y < y < y,+ d:y J = 

= ••• P [xL<X<:X.~ +lcbc.LI}+-
+P [xL+1 <X< xi.+1 +I d.x~+1 ~+ ... = 

= p(xi)jd.xtl.., p (xi."'1) I d.:x.i.+11 + ... 

With f'(xL)d.xt =dy Eq. (2.42) follows. 

Functions of Several Random Variables. 

Let 
(2.43) 

We look for the distribution q (y 1 J''''ik). 

If k < n the number k of theyi. is first 

supplemented to n by introducing the auxiliary vari­

ables 
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Then we solve the system 

• 

for the X~ . If it has ~ real solution x 1 ..• Xn, 

then 

(2.44) 

21 

where J represents the Jacobian of the system (2.43) 

()f1 () f 1 

ax1 OXn 

J ( X-1 ..• Xn)= 
(2.45) 

()fn ()f n 

ax1 ()xn 

If the system has more than one real solution the 

right hand side of (2.44) has to be replaced by 

If the system has no real solution then 

q (Y1 , · · · Yn) = 0 
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3. Random Processes . 

Again, let an experiment be given cha­

racterized by the results (outcomes, elementary events) 

~ forming the space 5 {~1,~2.· .. ~n}· Probabilities 

P [EJ are assigned to certain subsets E of 5 . How­

ever, to each outcome of a trial we now adjoin not a 

real number X but a (real or complex) time function 

This family of functions forms a stochastic process. 

In the following we shall use the notation x(t) omitt­

ing the dependence on~. Of course, X can be a multi­

dimensional variable. 

From the above we see that X (t) may 

have four different meanings: 

(1) A family of time functions (t and~ variable) 

(2) A single time function ( t variable,s = ~i fixed) 

(3) A random variable (f=t~fixed, S variable) 

(4) A single number ( t and S fixed) 

RandDm functions of a stochastic pro­

cess may mean quite different things. A realization 

of the one-dimensional Brownian motion, for instan-

ce, will perhaps look as in Fig. 1.3. 

tinuous but nowhere differentiable. 

lt is con-
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Fig. 1. 3 

23 

Above all, however: if 

x ( t , t;~} is known 

for t < T its further 

course can not be pre­

dicted. 

On the other hand, if one considers the random pro-

cess 

then each realization x(t,~=t;t) represents an entire­

ly regular curve, which is known for t > T once it 

is known for t ~T 

P r o b a b i 1 i t y d i s t r i b u t i on F (X ; t ) = P [x ( t) ~ X J 
and density p (x; t) = ilF /ox are now, in gener­

al, functions of time t . However, they are no longer 

sufficient to describe the process. In the sense of 

probability theory a random process 1s to be consider 

ed as being determined if its n-dimensional (n=l,2,3 .• ) 

probability distributions or probabilitv densities 

are given (each higher distribution contains all 

preceding ones and describes 

creasing accuracy): 

~ 

0 n e - d i m • : P1 [x ( t) ~ ~ J = J p1 ( x ; t ) cb. , 

-oo 

the process with in-

for ~ =OO 
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' '1\ 
Two-dim.:~ [x(t)~ ~, x(!»)E11J =/ jp.t(x,'nt.~) d.x dy 

-ao -ao 

(3. 1) 
n-dim.: 

-ao -oo -co 

We have 

Connected with the probability law for the n. random 

variables x(t1) 
istic function 

.... X (tn) is the joint character-

<p ( q,, q2 ••• q. ; t, ,t 2 ••• t. )• E {exp [• ( q, x (t,)+ ... +q,x (t.))J}, 
+oo +oo 

=J .. j exp [~(q1x1 + ••. qnxn)] Pn(x~, ... Xn;t1, ... tn)d.x1 ... d:x'll 
-oo -ao 

(3.2) 

+ao 

Mean value E{x(tJ}= m(t)•<x(t)>•tp(x;t)dx (3.3) 
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Correlation Function (Autocorrelation) 

+CX>+oo 

E{x(t) ·X(&)l .. R(t,s.) = < x(t)·x(s) > =/ jxyp(X,'/;t,s )dxd.y 
J -oo -= (3.4) 

and similarly for the higher moments. For the vari­

ance we have 

( 3. 5) 

Discrete Distribution 

(3.6) 

( 3. 7) 
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Expectation (3.8) 

Autocorrelation 

(3.9) 

In the case of a normal distribution 

the random process is completely determined if m (t) 
and R(t,5) are known s1nce then all p(~ 1 ... ~n;t1···tn) 
are determined, cf. (2.35). 

Stochastic Continuity, Differentiation and Integration. 

In order to apply the rules of analysis 

to random functions •)the concepts of continuity and 

limit have to be redefined. This can be done 1n vari­

ous ways. Some definitions are given below. 

•)The difficulty arises because a stochastic process 

represents a family of functions. Some members of the 

family may behave quite reasonably while others mav 

be pathological. Our definition shall, however, be 

valid for the entire family! 
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(a) Ordinary (deterministic) continuity 

l~m [X ( t +h) - X ( t ) J = 0 
h-o 

for each realization ("sample") of the process. 

(b) Almost sure continuity 

!Lm [ X ( t i" t\) - X ( t ) ] • Q 
n-o 

with probability P •1 . 

(c) Continuity in mean square 

Definitions (a) and (b) refer to sample properties and, 

hence, are more desirable in applications than (c). 

However, definition (a) is too restrictive and is not 

being used in probability theory. (c) is the most 

commonly used form. (b) and (c) do not imply each 

other. 

In the same manner derivative and Riemann 

integral of a random function may be defined. For 

instance, for the mean square derivative we have 

[ {[ x(t•h~-x(t) _ x(t ~}-a 
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Theorem. For the existence of X (t) in the above sense 

the existence of 

vR 
at 

at t = S is necessary and sufficient. R (t.~) is the 

correlation function of the process. We give a proof 

for the stationary case. It suffices to show the ex­

istence of 

R(O)-R(h) 
h?. 

for h-o. For this, 1n turn, the existence of 

and 

R(h)-R(O) = R'(o) = 0 
h 

R (h)- R(O) == 
h2 

R"(O) 

1s necessary and sufficient. But, as a consequence of 

the symmetry of R (t) the first condition is satis­

fied if R'(O) exists. This completes the proof which, 

for a nonstationary process may be given in an analo-

gous manner. 
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For a differentiable process 

(3.10) 

"Expectation and differentiation commute". 

bb 
Similarly, if the Riemann double integral 

b 

//R(t,'l)d.td.5 
a a 

exists in the square (a,b), then jx(t)d.t 
Cl 

exists in mean square, and 

(3.11) 

"Expectation and differentiation commute". 

Stationary Random Processes. 

If m is independent of t, and if R. (t,5) 
depends on the difference t-5 only the random process 

is called (weakly) stationary. ~'is then a constant. 

We have 

R (t-s) = E{x(t)x(~~= R(5-t) = R(-rL -r =ls-tl (3.12) 

and 

a''= R(o)- m' (3.13) 

Note. If t denotes a spat;e variable rather than time 

the process is called homogeneous. 

Note. The process is called stationary ~n the strict 

sense if its entire statistics remains unchanged 

under a time-shift 
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(3 .. 14) 
for each n . It follows that 

E { x ( t)} = m = con !It 

(3.15) 

E { x (t+-c) .x(t)} = R (1:) = R (-1:) 

The same holds true for the cross-correlation of a 

two-dimensional process x(t), y(t): 

(3.16) 

If (3.14) holds for n. ~ k only rather than for all n. 
the process is called stationary of order k • A pro­

cess of order 2 is also weakly stationary; the con­

verse is not true! 

4. Transformation of a Random Process . 

Let an operator T be defined on the 

set of random functions x(t), and let T adjoin to each 

function of this set one and only one function y(t): 
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x(t) T f.-....-Y._( t) y (t) = T [x (t)] ( 4. 1) 
)Ill 

F i.g. 1. 4 

We speak of a transforma­

tion or mapping. Frequent­

ly, x(t)and y(t)are called 

"input" and "output", respectively, of the system de­

fined by T. 
Since, to each outcome ~ ~ there corresponds one time­

-function X (t, ~iland, hence, one time-function 'I (t ,~i;) 
the operator is deterministic. If, however, two out­

comes ~ 1 and t;2. exist such that 

btrl: 

we speak of a random operator. If, for instance, T is 

a differential operator then it is deterministic or 

random depending on whether its coefficients are de­

terministic or random, respectively. For the time be­

ing we restrict ourselves to deterministic operators*) 

and consider two special cases. 

(a) Time- Invariant Systems. Let the operation T(x) 
t 

be a function of X but not of X or J x (r) d:t etc. 
0 

Then the output y (t1)at time t1 depends on :X. (t1J 

•) Random operators will be discussed in Chapter Y 
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only and is independent of the past or future values 

of x (t): the system has no memory. 

S i n c e now y = f ( x.) t he p . - d en s it y o f the p r o c e s s y ( t) 

may be determined from (2.42). Similarly, one finds 

the joint density 

(2.44), with y~ e 

CJn (':11 1 ···':In i t1 1 ••• tn) 
y (tJ= f [:x. (t~)J 

from 

For expectation and autocorrelation we have 

(4.2) 

Ryy(t., t2) = E {y Ct1) ·':J (tz )}= Jj7cx1) f Cx2.) Pz (x.1, X.2 it1 1ta) d.x1 dx2 
-oo -oo 

( 4. 3) 

If the input X (t) is stationary ~n the strict 

sense or stationary cf order n then the output y (t) 

is stationary in the strict sense or stationary of or 

der n , respectively. The proof follows from a con­

sideration of qn (y~ 1 •• ·Yn; t~, ... tn) since the Jacobian 

is independent of t. 

If x.(t)is only weakly stationary then y ( t) is 

not necessarily stationary in any sense. 

(b) Linear System. If the operator T = L has the pro­

perty that 

(4.4) 
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for arbitrary ai. and :x.i.(t)then it is called linear. 

We find, as a consequence of (3.10)and(3.11) 

that 

E {L [?: ( t TI} = L [ E {x. ( t !} J ( 4 • 5) 

"Expectation and linear operator commute". 

For the autocorrelation we have 

Rxy(t ,5) = L5 [R:x:x(t,s)] ) 
( 4. 6) 

Ryy(t,~) = Lt [Rxy(t.c;)]"' Lt L5 [Rxx.(t.~~ 

where lt and l 5 indicate that 5 and t, respectively, 

are parameters only. 

An important linear operator is the poly­

nomial P(D), with constant coefficients, in the de-

rivative D = d/dt : 

( 4. 7) 

A second, frequently occurring linear transformation 

is of the form 

t 

y (t) =- /h (t--r) :x:.(-r) dl' ( 4. 8) 
-ao 

where h.(t,l:) denotes a deterministic function, the so-

I 



www.manaraa.com

34 Chap. I - Elements of Probability Theory -

-called "impulse response" of the system. 

It is important to note that the applic~ 

tion of a linear (deterministic) operator to a normal 

random function again produces a normal function. The 

reason LS Ln the fact that the sum of (dependent or 

independent) normal random functions is again normal. 

5. Correlation Theory . 

A random process may be considered to 

be completely determined if all its p.-distributions 

(3.1) are known. However, the determination of these 

distributions is, in general, a difficult or even im­

possible task. Frequently one has, therefore, to be 

satisfied with the knowledge of mean value and corre-

lation function. This highly restricted treatment 

of random processes is called correlation theory. 

Some Important Properties of Correlation Functions. 

For the sake of generality we admit random functions 

that are complex - valued 

:X: (t) = u. (t) + i.'\T (t) 

h . * . T en, WLth denotLng the complex-conjugate, 

R (t.s) = E {x(t) ·x*(s)} (5.1) 

and we have 

(I) R (t.5)::. R*(s.t) ( 5. 2) 
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For a real random function this becomes symmetry: 

Consider now the expression l:x. (t) ± :X. (!>)1 2 , 

which is real and nonnegative. Hence, for its expect~ 

tion we have 

or, after expanding: 

(n) R ( t It ) + R ( & I ~) ~ 2. I Re R ( t , <J) I (5.3) 

For a stationary function R(t,s)-R (t-~) = R(l')) 
and (I) and (n) go over into 

(I a) R (1') = R*(-1:) 
(5. 2a) 

R(-r)= R (-T) (real) 

(na) R ( 0) ~ I 'Re R ( -r) I 
(5.3a) 

R (OJ~ R (-c) (real) 

For the cross-correlation of two complex random func­

tions:x:(t)and y(t) 

( 5. 4) 

analogous relations hold 

(m) Rxy(t,s) = R~x (s,t) 

Rxy(t.~) = Ryx(s,t) (real) 
( 5. 5) 
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(IV) (5.6) 

The last relation follows from 
+00 +00 

I Rxy(t.s)I=/J:x.yp (x,y ;t,~) d.:x. dy 
-00-00 

with the aid of the Schwarz inequality ~] , p. 46. 

In the stationary case, ~xy(t,s)--Rxy(t-s)= 

= "Rxy ("C) , equations (5.5) and (5.6) simplify 

to 

(Iii a) • Rx.y (,;) = Ryx. (- 1:) 
(S.Sa) 

Rxy (1:) = Ryx (-1:) (real) 

( J! a) (5.6a) 

For the cross-correlation of a random 

function x(t) and its derivative x(t) one finds 

immediately 

( 5. 7) 
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and, in the stationary case, 

d.Rxx ('t) 

d.t 
If, in .addition, x(t) is real, we have 

37 

(5.7a) 

Rxx(O)= 0 (5.8) 

as a consequence of the symmetry of Rxxwith respect 

to l'=O. 

Similarly, for the second derivative 

or ( 5. 9) 

Stationary Processes. 

Within the framework of correlation theory 

there is, of course, no difference between stationary 

and weakly stationary processes. 

Ergodic Theorem 

We are concerned here with the problem of 

finding the statistics of a process X (t, ~} from a 

single observation ~ = t; ~ • If this is possible for 

the entire statistics the process is called ergodic 

in the most general form. For such a process time 

averages are equal to ensemble averages (expectations). 

Clearly, in correlation theory we are only interested 

in m and R(.). 
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Our first question Ls, therefore: under 

what cLrcumstances is the time average 

T 

X = ~ I :X (t) dt 
0 

Ln the limit T-oo equal to the expectation m=<x(t)>? 
Obviously, X is a random quantity with expectation 

T 

E {i (t)} = + j m dt = m 
0 

The variance ii 2 of X is given by 

T T 

0" 2 = E {ex-mY}: ;2./d.t/E{[x(t)-m] [x(s)-mJ}d.!1= 
0 0 

T T 

= ; 2 j d.t j [R (s-t) - tnl] d!l 
0 0 

We introduce now the new variable 
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In order to sweep the en­

tire square area ~ has to 

go from - T to +T. Thus we 

have, writing R('t)-m 2= A('t) 

for brevity, 

t T = (On~t 
r-"----. 

Fi.g.l.5 

[ 
0 T T T-1: l ! A (-r)_[ dt d-e+ I A (-c) I d.t d't'J = 

= 

T T 

= ; 2 /(T--c)A(-r)d.-r= ~ /(1- ~)~('r)-rn2-J ci-r 
0 0 

39 

Now, in order to have the random variable x take on 

its expected value rn 1n the limit as T-oo it is 

necessary and sufficient that its variance 0'- 2 goes 

to zero in the limit. Since 
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we have ergodic theorem I 

T 

!Lm ~ j x ( t) cit "' m 
r-ao 0 

(5. 10) 

if and only if 

T 

t~m ~ /R(t)d.t =m2. 
r-oo 0 

(5.11) 

If we now consider the process 

u.(t)"' x(t+-r) x(t) 

whose expectation is R(T)and whose autocorrelation is 

given by 

(5.12) 

we obtain at once ergodic theorem 0 

T 

tLm J..jx(t+-r) x(t)dt = R(-r) 
r~ao T 

0 

(5.13) 

if and only if 
T 

e ~ m ~ I R u.u. ()..)d.). = R 2. ( 1.' ) 
T-oo 0 

(5 .14) 

We observe that a knowledge of m and 

R(.) suffices to test a process for ergodicity of 

the mean. To test for ergodicity of the autocorrela­

tion one has to know the fourth-order moment Ru.u. ! 
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Spectral Density. 

The Fourier transform 

+~ +~ 

X(w)= j.x(t)e-Lwtdt, x(t)= /li. jX(oo)eLwtriw 
-oo -~ (5.15) 

does, in general, not exist for a stationary stochas­

tic process. On the other hand, the autocorrelation 

does have a Fourier transform called spectral densi-

~ ~ (w): 

+z ao 

S(w)= jR(t)e-~wtdt = 2 jR(t) to~ oot d.t (5.16) 
-ao 0 

(5.17) 

The two Eqs. (5.16/17) are known as the Wiener­

Chintchine equations ·~ It follows from (5.16) that 

S(w) is real and even. 

If ergodic theorem ll, Eq. (5.13), is assu~ 

ed to hold (equality of sample correlation and ensem 

ble correlation) Eq. (5.16) may be written 

•)Watch for different definitions of the Fourier 

transform in different sources! 
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r 

S (w) = lim 
r-oo 

j x. (t+TJ x(t) dtd:t 
-T (5.18) 

One also arrives at this expression ~n 

the following manner. Replacing the divergent Fourier­

-transform (5.15) by 

X ( w) = hm (a) 
r-oo 

one gets 
T +T 

X(w)X*(w)::: ti.m 2\ j-x(A.) jx.(t)e-iw(A.-t)d.tdA. 
T-oo -T -T 

which, putting 

>-.-t =T d. A = d "T 

gives at once 

S (oo) =X (w) x• (w) ::= 0 (5.19) 

Transformation (a) is called "generalized Fourier 

transform". 

Linear Systems 

The output of a linear system with con 

stant coefficients may be represented in the form (~.8)~ 

*)Using the c'} -function and its derivatives, if nec­

essary. 
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t 00 

y(t)= jh (t--r)x('t)d:t=/h(--c)x(t--c)d-c (5.20) 
-OQ 0 

for t < 0 

If the process started at t:Q , then x(t)=O 
and (5.20) goes over into 

t t 

y ( t ) = / h ( t -1") x ( 'i) d:r = /h ( 1:) x ( t - 1:) d -r (5.21) 
0 0 

The function h (t) is called "impulse re-

sponse" of the system since it represents the response 

to X (t) = 0 (t) as may be seen from (5. 20). By" trans i­

t ion function"•) U (t) is meant the response of the sys-

tern to a unit step input X (t) = H (t) : 
t t 

U (t) = jh (t -TJ d1: = jh("A) d).. (5. 22) 
0 0 

Finally, if the input to the system 1s periodic with 
. . ~ (t) = eicut un1t ampl1tude, oN one obtains, after the 

transient response has died out, a purely periodic 

output whose complex amplitude F(w) is known as the 

"frequency response" or "admittance" of the system: 

t 

y(t) = F(w)eiwt= jh (t-1:)ei.oo1: d.-r 
-oo 

One finds 
t 00 

F(w) = J h (t-"C)e-Lw(t-•\i"C = J h(A.)e-ioo).. dA. (5.23) 
-oo 0 

*)not to be confused with "transfer function". 
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Hence, F(O)=U(ooJ. 
If 1n particular, the system may be d~ 

scribed by a linear differential equation with con­

stant coefficients, 

P (D) y(t) = :x:(t) H (t) (5.24) 

with P(D)given by (4.7), then h(t) is that solution 

of the homogeneous differential equation (5.24) 

P (D) h (t) = 0 (5.25) 

which satisfies the initial condition 

(5.26) 

Putting 
· t F ) ,...,t x :::. e lw , y = ( w e in ( 5 . 2 4), 

one obtains for the admittance 

1 
F(w):: P(i.c.J) (5.27) 

If, instead of (5.24) one has the diffe 

rential equation 

then 

P (D) y (t) = Q(D):x:(t) 

Q(~w) 
F (w) = 

P(i.w) 

(5.28) 

(5.29) 

We consider now the case where x(t) is a 

stationary random function. The expectation my 
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is then, 

t 

my= j'rL (t-1') tllxd.'t "'mxU(t) 
0 

After a sufficiently long time this becomes 

my = F ( 0) m x = con!lt .. 

45 

(5.30) 

(5.31) 

Eq.(4.6) g1ves for the autocorrelation of the outputy 

t 5 

Rn(t.~)=/'rL(t--r) jh(s-i-.) Rxx(.l..--r)d.A.ch 
0 0 

(5.32) 

Integration is, 1n general, difficult. However, upon 

introduction of the spectral density with the aid of 

(5.17) 

00 

I 5 X X ( (i) ) CQ'j w ( A. - 1: ) d. w 
0 

Eq. (5. 32) takes the form 

which, sometimes, is more convenient for integration. 

One observes that during the transient period y(t) is 

not a stationary random function since Ryy then de­

pends on both t and~, and not on the difference t -~. 
Only after a sufficiently long 1time,t-oo, y(t)be-
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comes stationary. 

Some fundamental relations for this 

stationary case will now be derived. Multiplying both 

sides of the second form of (5.20) by :X: (t-.A), and 

taking expectations, we obtain 

OD 00 

£ { y(t) x (t -,\)} = Ryx (A)= jh ( T) E { x (t--r)x (t-t.)} ch: = jh( T) Rxx(f...-'t)d:r 
0 0 

(5.34) 
We multiply now both sides of this equation by e-tw~ 

and integrate between - oo and .... oo • We get 

.f.oo ao ao 

/Ryx()..)e-tw>.d"A= Sy:x:(w) =/h(-r)/Rx:x.(A.--r)e-L00,_dA.d.T = 
-oo 0 -oo 

ao +oo 

= jh.(T')e-i.oo-rd't /Rxx(~)e-i.ooE.d,t, 
o -oo 

or, taking (5.23) into account, 

s y:x: ( w) = s XX ( lt)) F ( w) (5.35) 

Now we repeat the procedure by multiply 

ing (5.20) with y(t+.t..). Taking expectations we find 
(X) 00 

E { y(t) y (t+J..)} = Ryy(A.)= /h (-c)£{ x(t--r)-y(t+A.) }d-r= jh(T)Ryx(l-i"t)d;r 
0 0 

(5.36) 

If, again, this is multiplied by 
- i.c..>A. e and integrat-
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ed, one has 

+oo 00 00 

Syy(w)=/Ryy(f..)e~Lw)..df.. =/h(r:) /Ry~(t..-..r:)e-i.w)..dA.d-c = 
-oo 0 -oo 

oo +oo 

= j h ("r:)e +LwT. d't J Ry~(t. )e- i.wt. d.E.. 
o -oo 

and, therefore, 

~ 

5 yy ( w) = 5 yx ( W) F ( W) (5.37) 

Finally, upon substituting (5.35) ~nto 

(5.37), one obtains the following basic relation bet­

ween the spectral densities of input and output of a 

linear system in the stationary state 

Syy(w)= F(w)F*(w) Su: (w} (5.38) 

F ( w) F *( w) is the square of the a b so 1 u t e v a 1 u e of the 

admittance and is, therefore, a real quantity. 

As an example, the spectral density Sii of 

the derivative y = cix. J dt of a stationary process 

X. (t) is, with F(w) = LW, 

(5.39a) 

Similarly 

(5.39b) 
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N o t 
•) 

e . We have shown (p. 32 ) that for the 

existence of the derivative in mean square ~(t)of a 

random process :x.(t) the existence of the first and 

second derivatives in "'C:: 0 of the autocorrelation ~s 

necessary and sufficient. Now, in general, there can 

be no doubt as to the differentiability of the random 

functions occurring in engineering applications. How-

ever, the analytical expressions chosen to approxi-

mate the correlation functions obtained in experiment 

are frequently so simple, cf. (1), (7), (8) in the 

preceding table, that they belong to nondifferentiable 

processes like (1) and (7), or to processes that are 

only differentiable once, like (8). 

It is, therefore, of great importance 

that, at least in the stationary case, it can be 

shown that correlation theory and, in particular, the 

fundamental relation (5.38) remain valid even if, 

formally, the derivatives of arbitrary order of non­

differentiable functions are involved. 

Consider differential equation (5.28). 

It suffices to take Q(D)= Dm Eq. (5.20) then 

renders for the stationary solution 
011 

y(t)=/h.(T.) 
0 

•)See [8], p. 80 
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Repeated integration by parts transforms this equa­

tion into a form which no longer contains the deriva­

tives of x(t). The integrated parts drop out as a 

consequence of (5.26) and we obtain 
GD j d,mh('t) 

y(t)=(-1) d:rm x.(t-1:)d1: 
0 

For the correlation function of y(t)one has, therefore, 

Employing (5.17) to express R:x.x in terms of the spec­

tral density Sx.x (oo) we get 

R (A.)=-1 +-~~(A)). [/CID d."'h.("t') e~oo-c d-r/aodmh.(!>) e-ioo5d.s] S ( )dw 
YY 2x j ~ d.-cm d.c;,m xx W 

-~ 0 0 

If we now again integrate by parts the integrated 

parts vanish and we obtain 

+00 ~ 

'Ryy ( A.)= 2 ~ J e ~ 00 ').. I ( ~ w) m 1
21/ h ( 't) e- ~ w't d 1: I 's :x: :x. ( w) d w 

-ao o 

According to (5.23) the second integral represents 

the admittance of the left side of (5.28), i.e., 

1 / P ( ~ w) wh i 1 e is identical with Q(i.w). 
Using (5.29) we have, therefore, obtained relation 

(5.38) without assuming the existence of the deriva­

tive d..,x jdtm ! 
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6. The Poisson Process . 

As a first special random process of 

considerable practical interest we discuss the Poisson 

process. 

Let an event occur 1n irregular time 

intervals. Examples are the eMission of an electron 

from the cathode of a tube, or the arrival of custom­

ers at a service station, or, also, the occurrence of 

accidents, the rupture of a machine component, etc. 

Common to all these events is that they 

may be characterized by a counting function x(t) giv­

ing the number of events that occurred in the time in 

terval (O,t),open on the left, provided we start count-

5 
I, 

'5 

2 

1 

x(t) 

01234S6789t 

Fig.l.6 

ditions: 

ing at time t= 0 Hence, the 

random variable X can take 

on only the integer values 

0,1,2 ....... , and x(t) is a 

discontinuous process. 

Initially x(O)=O . Such 

a counting process is called 

Poisson process provided it 

satisfies the following con 

(I) The increments xCt)-x(!>) are independent. If the 

random variables x(t)- X("E») and x(t+h)- x (s~h) 

have the same p.-distribution we speak of a 

process with stationary increments. 
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(II) p [:x: ( t+ ~) - X ( t J = 1 J = vs ( 6. 1) 

P [x(t+5)- x(t) ~ 2] = 0 for ~- 0 

P [x ( t ~ ~) - :x. ( t) = o] = 1- vs 

In words:In a sufficiently small time-interval 

s the probability that one event will occur 

is proportional to ~ , while the probability 

that two or more events will occur is zero. 

Hence, the probability that either one or no 

event at all occurs is one. 

The factor of proportionality v may be con­

stant (homogeneous process), or may depend on 

time, v = v (t~ , (inhomogeneous process). 

We look first for the probabilities 

P [x (t) : n] = p,J t) (n.=0,1,2 ... ) ( 6. 2) 

At two arbitrary time instants t and t+s we have from 

condition (I) 

( 6. 3) 

We expand in powers of 5 and let S---+-0. Using th0 

initial conrlition 
Pn. ( 0 J = 0 ( 6. 4) 
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and condition (II) for the conditional probabilities 

for n ~ 2 

q1 (s) = vs (6.5) 

we find 

+ ... = ... Pn.-1 (t)vs + Pn.(t) [1- vc;,] 
or 

d.pn.(t) 
dt + vpn. (t) = "Pn-1 (t) ( 6. 6) 

The solution of this linear differential-difference­

equation is, for V =canst, taking initial condition 

(6.4) into consideration, given by 

(t) -vt ( vt)"' 
p = e -. n. n! ( 6. 7) 

The parameter v 1s called density or intensity of 

the Poisson process. If vis not constant the Poisson 

process is called non-homogeneous and can be reduced 

to a homogeneous process. In the following v will be 

assumed to be constant. 
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Expectation 

to (3.8), given by 

E{x(t)}= m(t) is, according 

00 00 

m(t) = L n Pn(t)=e-vtLn(~~)" 
'11=1 '11=1 

Upon differentiating the series 

00 

ex= -L x" 
n! 

'11=0 

termwise with respect to x one obtains 

and, hence, 

m(t)=vt 

In the same manner one fin~s for 

by differentiating the series for ex twice 

( 6. 8) 
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--------------·-----·------------

T h (' v a r i an c e 1 s , t he r e f o r e , 

o- 2 = vt :X: 
( 6. 9) 

For the random variable x(t)-x(~) we find, 

usin~ (I) and Fq.(2,28), 

(6.10) 

Hence, the increments are also stationary, and 

E[x(t)-x.(s)] = v(t-~) (6.11) 

(6.12) 

We consider now four time instances 

t.., 1 t2. 1 t 3 , t 4- . If the corresponding intervals do 

not overlap, t1 > t2.> t!l > t4 ,the variables x.(t1)-x(tz) 

and x(t 3)-x(t4") are independent and we have 

(6.1~) 

If, on the other hand, the intervals do overlap) 

t1 > t3> t 2 > t 4 , Eq. (6.13) no longer holds. 
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Putting, however, 

Eq. (6.13) can be used again and one obtains after 

some algebra, using (6.12) 

57 

(6.14) 

1s the length of the overlapping interval. 

Putting t1 = t , t3 "'~ , tl "'t4 = 0 in 

Eq. (6.14) the autocorrelation follows as 

R (t,!») .. E { x.(t )x (~ )} = vlt:; + V5 (t ~ ~) (6.15) 

The characteristic function is 

'P (q )= exp [vt (e~q -1)] (6.16) 

7. The Wiener Process . 

This process, named after Norbert Wiener, 

represents the mathematical model of the Brownian roo 

tion. However, it se~ms to be applicable to entirely 

different phenomena too, the stock market, for in-
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We consider a particle in a medium in 

equilibrium. Since it is continuously being pushed 

~y the fluid or gas molecules it describes a random 

path. Its displacement x(t)-x(s), inatime1.n-

terval which is large in comparison with the time bet 

ween two subsequent pushes, may be considered as the 

sum of a large number of small irregular displace-

ments. According to the central limit theorem it 

appears, therefore, reasonable to consider x(t)-x(5) 
as being normally distributed and, since the surroun~ 

ing medium is in equilibrium, as stationary*~ Finally, 

we assume that the displacements or displacement J.n­

crements over non-overlapping time intervals are J.n­

dependent. 

This leads to the following definition 

of the Wiener process: 

(I) {x(t), t i!tO} 

(II) For each t > 0 

(III) For all t > 0 

(IV) x(O):O 

has independent stationary 

increments. 

x(t) is normally distributed. 

E{x(t)}=O. 

~ The process x~)itself is not stationary! 
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From (II) and (III) we have at once for the 

p.-density 

( :x. t) = 1 exp [- xz ] 
P 1 V 2 7t 0"( t) 2 0"2 ( t) (7. 1) 

Furthermore, using assumption(IV~ 

Var {x(t+-r)} = Var { [~(t+-r)-x.(t)J + [:x(t)- x (a)]}= 

• E {Ht•T)- x(t ~} •E{r(t)-x(o ~}•2E }(t•<)-x(t ~ [x(t )-x(o ~} 

Since, by assumption (I), the increments are indepeni 

ent the last term is equal to the product of the ex­

pectations and vanishes therefore as a consequence of 

assumption (III). Noting finally that, by assumption 

(I), the increments are also stationary, 

one obtains the following functional equation for the 

variance of the Wiener process 

Var {x(t+,;)}= Var {x(t)} + ~ar {x(-r)} 

The only continuous, nonnegative solution of this 

equation is 

Var {x(t )} = o- 2 (t) = at 
(7. 2) 
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Hence, also 

(7. 3) 

Eq. (7.1) now goes over into 

p(x.;t) = 1 exp [ ~] 
V21tat L 2at (7. 4) 

The constant a follows from experiment. For the 

Brownian motion it was also determined theoretically 

by Einstein, see [11], p.93. 

The Wiener process may be considered as 

the integral of Gaussian white noise: 

t 

X ( t) = I w ( -r;) ri-c (7. 5) 

0 

Indeed, all assumptions (I) to (IV) are satisfied. 

Normality follows from the linearity of the integral 

operator while for the variance one has, using (4.6) 

with Rur(t)= a3(-r) 

p.-density 

t t t 

<r2.( t )= a: J d."J fa ( 't) d.-r = a: 1 d.r;, = at 
0 0 0 

Last we show that the conditional 

p(x.;tlais) ofthe Wiener processsat-
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isfies the diffusion equation 

(7. 6) 

Since x(t)is normal with zero mean we have for the 

conditional expectation from Eq. (2.38) 

However, from Eq. (7.3) for t ~5 1 

whence, using Eq. (7.2), 

(7.7) 

and 

E { x(t) I :x:(~) =a} =a. (7. 8) 

61 

Similarly, one finds from Eq. (2.39) for the condition 

al variance 

Var{x (t)!:x(5)=a} =E{[x(t)-~lx(~)=a} =,d_(::)~=a(t-~) 
(7.'1' 
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The conditional p.-density of the Wiener process ~s, 

therefore, 

1 exp [- _(x_-_a)_2. ] 
V2na (t-s) 2 a(t-s) 

(7.10) 

which may easily be shown to satisfy Eq. (7.6). 

E q . ( 7 . 6) i s a spec i a 1 form of the 

Fokker-Planck equation to be discussed in the next sec 

tion. 

8. Markov Sequences • 

As a preliminary to the discussion of 

the Markov process we first briefly discuss Markov 

sequences. 

Through Eq.(l.4) we have introduced con­

ditional probability. Consider now a sequence 

:t 1 , 'X2. ••• 'Xn. • • • of random variables*). The expres­

sion 

P[x."'~Xn.lx.n.--t=X~~..1 ,xn._2 = X~~.. 2 .•. x1=x1] = F(Xn.IXn.1, ... x1) 

( 8. 1) 

•) Such a sequence may be looked upon as a special case 

of a random process x(t) where only the values x~ = x(t~'1 
at certain discrete time instants t 1 , t 2 .•• are regis­

tered. 
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then represents the probability that Xn ~ Xn 
i-!: nne alreadi': knows the values X n-1 ' X n.-2. X 1 

that have been taken on by the preceding terms X n-~ J 

Xn-l •.. xi in the sequence. 

In general, each preceding value will have some influ 

ence on the probability of X 0 • If, however, only the 

value X n-i immediately preceding Xn. influences 

the probability of Xn. while all other values X0 _ 2 ... X1 

are without influence, 

( 8. 2) 

we speak of a Markov sequence. The conditional prob~ 

hility (8.2) is frequently called transition probabil­

ity. 

¥or a continuous sequence a p.-density 

exists given by 

( 8. 3) 

Therefore, while the joint p.-density for an arbitr~ 

ry sequence is, according to Eq. (1.4), given by 

this reduces for a Markov sequence to 
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From (8.3) we conclude that 

The two random variables Xn and Xs of 

a Markov sequence are, for n. ;:. r > ~ conditionally 

independent, since 

(8.?) 

Proof: Since (8.5) holds for any subsequence of a 

Markov sequence it follows from (1.4) that 

p ( ~" 'Xr 'Xs) 

P (x,.) = p(xn.ixr)p(xrlx5) P(Xs) 
p (x,.) 

whence, because of p (xrl x5 ) p (x 5)::: p(xr) p(xs I XrJ *-), 

Eq. (8.7) follows. 

Integration over a random variable from 

-oo to +oo eliminates it from the p.-density: 

+ao 

P(Xn,Xs)= /p(xn,':ltr,xs) dxr ( 8. 8) 

-(ZI 

•) A Markov sequence is Markov also Ln reverse: 
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Similarly, for the conditional density, 

+00 

p(xnl Xs) = j p(xni'X.r ,x.5) p(xrlx!i) dxr ( 8. 9) 
-oo 

If this rule for the elimination of a random variable 

1s applied to a Markov sequence the Chapman - Kolmogo­

rov integral equation results: 

+ao 

P ( Xn I x!;) :I P ( Xn j Xr) P ( Xr I X!>) dx r (8.10) 
-ao 

or, upon multiplication by p(x5 )and integration 

+ao 

(8.11) 
-ao 

If the Markov sequence Xt can only take on 

the discrete values 

such that 

it is called a Markov chain. Using the following nota 

tion for absolute and conditional probabilities 

(8.13) 
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)ne immediately has the relations 

N N r1 p~ ( n) = 1 ) ~ p,/n 's) = 1 
(8.14) 

N 

p,~ ( n, 5) = ~1 Ptk(n,r) PkJ(r,5) (8.15) 

N 

p~ ( n) = l: p,} ( n , 5) p k;, ) 
~ :1 

(8.16) 

The last two equations are the discrete vers1on of 

Eq. (8.10) and (8.11). 

If, for every c1- , the "expectation" 

of the p.-distribution p J.k equals aJ., 

(8.17) 

the :Markov chain 
. •) 

1s called a mart1ngale 

9. Markov Processes . 

In consequent extension of Eq. (8.2) a 

random process is called Markov process if 

p [:x.( tn):!: xn I :X. ( tn-1 )=X n-1 ' ... :X. ( t1) =xi]= p [:X. ( t n) ~ Xn I 'X ( t n-1) = X n-1 J 
( 9. 1) 

•)Word from the French Provence denoting systematic 

betting. 
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for every tn > tn-1 > t 1 • In other words: if 

X (to) has been fixed no condition that may be impos­

ed on { x(t), t <to} has any influence upon the statistics 

·for t > t 0 • Statistical behavior in the future is 

uniquely determined by the present, independent of the 

past. 

If , for a process , x ( t 2) - X ( t of) for t 2 ~ t 1 

is independent of x(t)for every t't 1 , the process is 

Markov. Indeed, X (t 2') then depends only on x(t1)but not 

also on any preceding value. It follows, in particular, 

that a process with independent increments is Markov, 

provided X (0) = 0 , since then x(tz)-x(t 1)is ind~ 
pendent of X (t)- x. (0) = X (t) for all tEt1. 

Hence, both the Poisson process and the Wiener process 

are Markov. 

The equations of the preceding section re­

main valid provided 'Xn is replaced by X (tn)· For 

instance, Eq. (8.5) for a continuous process becomes 

n. 

p(x1,:x;2 · ·· 'Xn j t1, t2 · · .tn) = p(x" jt~lf P(Xritr I Xr--titr--t) 
r=2 

(9.2) 

The Chapman- Kolmogorov equation (8.10) reads now 

+oo 

P (Xi t I X.o ito) = j P (xi t I 'X1 j t 1) p ( X1 j t 1 I x0 j t 0) dx 1 
-oo ( 9. 3) 
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and Eq. (8.11) becomes 
+ClO 

p (X; t) = j P ('X j t J X 0 ; to) p (xo j t0) ch:. 0 

-QO 

(9.4) 

Analogous relations hold for n-dimension 

al processes 

If a process x(t) is determined by the 

initial value problem 

~~ = f(x;t)+~(t), ( 9. 5) 

and if the random function i(t)has the property that 
( t \ . d *) ~ ., J are 1ndepen ent for every 

< tn , then x(t)is a Markov proc-

ess. Indeed, X (t) is uniquely determined by its 

initial value x(to) and the values ~(t) in the inter-

val ( t 0 , t) . All preceding values of x(t) are 

of no influence. 

•) ~(t) is then called a purely random function, and 

is defined completely by its p.-density p1 (-x j t) , 
s1nce then 

An extreme case is white noise. 
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The same holds for a differential equation 

of order n which can always be reduced to a system 

of n differential equations of order one and hence, 

to an n-dimensional Markov process. 

For a normally distributed Markov process 

with mean value zero 

(9.6) 

for all t 2 > t > t~ . Proof: Let x.(t2.) = lL, x(t)=y 1 

X (t 1) = ~ and construct a function 'W' = U- rx.y - f.H , 

orthogonal to y and .z cf.p.21. Then 

E { u.- ay- }l.ljy ,l} = E { lLI y}- rx.y- ill = 0 
and 

~ < y 2. > + fJ < y z > = < u. y > , Ct < y i > + jl < z 2 > = < u.z > 

But j) = 0 from the first equation. Substitution into 

the second and third equation gives (9.6). 

If, in addition, the process is stationary, 

Eq. (9.6) goes over into 

R(t) R(t) = R(t +-c) R(o) 
whence 

( 9. 7) 

Therefore, the autocorrelation of a stationary, nor~al 

ly distributed Markov process must have the exponen­

tial form (9.7)! Stationary Gaussian processes will, 
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therefore, in general not be Markovian. 

Finding the p.-densities of an arbitra­

ry random process is, in general, a difficult, if not 

impossible task. For the transition probability of a 

~arkov process, however, a differential equation 

exists known as Fokker - Planck equation, or Kolmo­

gorov equation. 

The starting point for the derivation 

of this equation is the Chapman - Kolmogorov integral 

equation (9.3). We generalize it immediately to an 

n-dimensional Markov process :X: (t) = [x 1(t) ... xn(t)]: 
+ao +ao 

p(x it +1: I X 0 ;0) = j .. . jp(Xi t -t-el y ;t) p (y; t I ~0;0) d'l1- •• d'l,. 
-ao -ao 

(9.8) 

Multiplication of both sides of this equation with 

an arbitrary scalar function R (~) which vanishes 

for x.,-- oo 1 ••• 'Xn-- oo , and integration leads to 

+ao +CO 

f. . I R (x)p(x I t+"C I Xoi o) d:x . ., ... d.:x.n = 
-ao -oo 

-t-OD +ao +ao +CD 

= j · .j d.y~ .. · d.yn j. ·. j R (X) p(x it+"C I Yit) p(y ,t I 'X0 ; 0) d:x ..... d:x.11 

-ao -ao -oo -CD 
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We now expand R (X) in a Taylor series in terms of 

(:X:~ - y~) 

n ()R i n ., ()2R 
R(x) = R(y)+~ (xL-y,) -+-.I: ~ (x~-'1~)(xi-'ji) + ... 

L='l OY~ 2. L=1 l:i OYi VYt 

and substitute into the right-hand side of the prece~ 

ing equation: 

1 

+~ ~:~ P(Y ;tl X 0 ;0 )j .. j(x~ -y,) p (x jt+'tl y ;t) d:t 1 ••• d.xn-t 

ai.(y,t ,-c) 

~ f>2R I ( ft 
+ 2 ~ 7 ayL vyi p(y;t I Xo j 0); .. ·; (x~-y~)(x~ -y· )p(x;t+-rl y j t) dx.,. .. dx"+ •. 

bLk(y, t,-.:) 

= j ... [ [R (x)p(x ;tl X 0 ;0) + 'r a~(x,t,-r) ~=i. p(x;t I X 0 ; 0) + 

where, at the end, we have written X instead of y . 
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Integration by parts now renders, for the complete 

equation, 

Since R (X) is arbitrary the integrand must vanish. If, 

in addition, we divide by 1: and go to the limit 

T -- 0 we obtain the Fo k k e r - P 1 an c k e quat ion f or 

the transition probability p (x;t I Xo j o) 

( 9. 9) 

with the corresponding initial condition 

(9.10) 

Coefficients Ot~ and Y.,tj are defined by 

rOO -tOO 

rt~(x,t)"' t~m ..L I· .. r(~h -x~)p(y;t+'t I X ;t) d.~~ ... d.yn 
,; ..... o 't' ) I 

-oo - oo 
(9.11) 

+OD +ao 

f.>~j-(x ,t) .. .;i::o : j. j( y~ -x0(Yi-xi) p(y;t+"t IX ;t) d.~ 1 .•• d.~n 
-oo -ao 
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assuming that all limits exist and that all higher 

terms in the Taylor series vanish for 1:--0, i.e., for 

y -x, of order 0 (l'~). 

Coefficients (9.11) may be written as cDndi 

tional expectations. Upon putting 

we have 

.. Ax· 
~ 

h"t 

= I :i:.~(A) d.A. 
t 

(9.12) 

(9.13) 

Let the random process x(t)now be g~v~n by 

the following system of n first-order differen ial 

equations: 

where f· ~ 
v a r i. ~ b 1. e 

(9.14) 

and h q.. are given functions of the ran ,I om 

X and of timet, andur~,(t)represents white 
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noise with zero mean and correlation functions 

(9.15) 

Using (9.14) one has from (9.12) for 't-+-0 

Therefore, and because of 

it follows from Eq. (9.13) 

h"t" 

a~= t~m ~i.(x,t)+~ h~/x.t) .L JE {w'j(x)} cu.]= ft(x.t) 
1'-o L k=1 1: 

t 

t'l-"r 

Jl~t = "tt~0 [·di. fJ -t f~ ~ ha J E { uri<.(A)} d,). ... 
t 

t+"t" t+~ t+~ 

+fJ~hirJE {w"r().)} ciA.+f~hi.khtr ~ [dpjE{urk(A.)wr(,u)}dA]= 
t t t 

1 
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The Fokker - Planck equation (9.9) then goes over into 

(9.16) 

with initial condition 

For the frequently occurring special case 

where the system (9.14) is of the form 

. 
f 1 + h 11 W' Xo~ = 

x2. = f2. + h21 Ut (9.14a) 

i-,3 = f~ + h31 'W" 

with 

R = 2 DB (t-s) (9.15a) 

instead of (9.15), the Fokker- Planck equation (9.16) 

reads 

(9.16a) 
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The derivation of the Fokker-Planck equ~ 

tion given above is purely formal, as is Eq. (9.14). 

Indeed, since the right-hand side of this equation 

contains white noise X~ does not exist: the process 

is not differentiable. Nevertheless, the equations 

can be used formally as may be seen employing the 

Wiener process as an example. Writing Eq. (7.5) for­

mally as 

i = w(t) (9.18) 

one obtains from (9.16) the correct Eq. (7.6) derived 

by an entirely different procedure. 

The exact derivation of Eq. (9.16) would 

involve so-called Ito integrals (also known as stoch 

astic integrals) whose properties are basically dif­

ferent from those of ordinary integrals which, if 

they contain the differential d'Ur(t) of white noise, 

simply do not exist. However, as has been pointed 

out already on p 54, random processes appearing in 

practical applications are always differentiable. 

Pathological functions like white noise are physical 

ly not realizable. Only processes zL(t)with a relativ~ 

ly wide frequency band are possible. Therefore, as 

has been pointed out by Caughey and Gray Q.z], it 
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seems more reasonable to employ ordinary integrals 

rather than Ito integrals, and to replace Eq. (9 .16) 

by the following slightly different equation called 

"physical" Fokker-Planck equation 

(9.19) 

The coefficients of intensity 

mined from 

are to be deter-

+GO 

2DL~=/E{zt(t)lt(t+-c)} ch (9.20) 
-OD 

Finally, it should be remarked that a 

Fokker-Planck equation may also be set up for dis­

crete processes x(t)which can take on only the valul:· 

a 0 , a1 ••• a" ... ,[4] ,p. 543. We give here the resu 

Employing, as in Eqs. (9.13), the notation 

( 9. 21 

then 

(9.22) 
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and one obtains the Fokker-Planck equation 

(9.23) 

where 

for ~--o 

( 9 • 24) 

Hence 

(9.25) 

As an example, consider the Poisson 

process. Here dn.= n ,and one notes that X (t) can only 

increase, at most by 1 in the time interval 5-0. 

Therefore, comparing Eqs. (6.1) with (9.24) it fol­

lows that 

qL (t) = q~,i.-1 (t) = v, 

with all other zero. The Fokker-Planck equation 

(9.23) reads therefore, with P~o (t,O) = Pi(t) , 

dp~ 
=- vp~ +VPi.-1 

dt 

in accordance with Eq. (6.5). 
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C H A P T E R II 

LINEAR RANDOM VIBRATIONS . 

The following treatement will be restric­

tive ~n the sense of correlation theory. 

1. The Oscillator with One Degree of Freedom under 

Stochastic Excitation . 

This is the simplest case. The correspond­

ing differential equation reads 

Y + 2 ~ w 0 y + w ~ y = X ( t) H ( t) (1. 1) 

where x(t) is a stationary random driving function 

with mean mx (t) = 0 

For the admittance one has at once 

F(w) = (1. 2) 

and for the impulse response 

(1. 3) 

Eq. (l-5.30) renders n'ly= 0 for the expectation of 

y (t) . The spectral density of the stationary solu 



www.manaraa.com

82 Chap. II - Linear Random Vibrations -

tion is, from Eq. ( l-5.38), 

(1. 4) 

and the corresponding autocorrelation is, according 

to ( I - 5. 1 7) , 

+oo 

R (-c) i I Sxx (w) CO!I W"t doo 
'IY ,. Jt ( 2. 2.) 2 4 ~ 2 2. 2 

J oo0 - 00 + ., oo0 w 
(1. 5) 

0 

We consider the special case of white 

noise excitation, ~(t) • A ur(t) From the table 

on p. 52 we have . If this is sub-

stituted into (1.5) we obtain, after integration, 

whence, for 1:=0 

2 cry = (1.7) 

During the transient state, t < oo, ':1 ( t) 
is a nonstationary random function. Its autocorrela­

tion follows from Eq. ( 1- 5.32) upon substitution of 

'R XX ( t) = A 2 6 ( t ) . 
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Assuming t 2: ~ we have 

t ~ 

Ryy(t.~) =A2/jh(t-1:) h(~-i..) 8(i..-'t)d)..d't = 
0 0 

t 

= A2./ h (t- -r:) h(~-T:) ch 
0 

-+ «>• (ro, VH' (t-•l)]} 
This renders for the variance 

83 

( 1. 8) 

At A2e·2t;wot r~ ( ~~ ~~ ( ~~ 1 J o-;(t)=lt~oo~+ 4 oo~(i-~a) Lt;co!l 2oo0 v1-~1 t)-v1-~1 o;,~n 2.oo0 v1-~1 t)-~ 

( 1. 9) 
which, for t~~, goes over into (1.7). 

White noise represents the extreme case of 

a pure random function. It fluctuates with infinitely 

large amplitude infinitely often in each finite time­

-interval, thus producing an extremely violent excit~ 

tion of the oscillator. It is, therefore, not surpri~ 
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ing that oscillations can be kept within limits by 

strong damping only. We note from (1.7) and (1.9), 

putting 1:=0, that the variance of the undamped oscil 

later grows beyond all limits a~ t --- ao 

If the input x(t)is normally distributed 

the output y (t) is normal. In that case the p.-density 

of y (t) is completely determined by my (t) and RH(t.~), 

cf. Eq_. ( l-2.35). 

2. System with n Degrees of Freedom • 

We consider a holonomic system of n 

degrees of freedom, with corresponding generalized co 

ordinates 

tion. 

ordinates 

qL (t). Let 'h = 0 in the equilibrium pos.i:_ 

It is convenient, by introducing the co 

Yt = C-ft (<= U, ... n)} 
( 2 • 1) 

'h = q~-n (~=n+1, ... 2n) 

to transform the Lagrangian equations of motion into 

the form 

y ( t) = Py ( t) + f ( t) ( 2. 2) 
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where 'i =('11 1 Y2. •• · • · · Y2.n) , Pis a 2n x 2 n 
coefficient matrix, and f(t)represents the vector 

( 0,0 ... 0 1 Q 1(t) 1 Q 2 (t) ... Qn(t)) of the driving forces. 

We suppose that Pis nonsingular and that its ln 
eigenvalues are different, with negative real part. 

Equilibrium y~= 0 is, therefore, stable. 

Let the principal-axes-transformation of 

(2.2) be given by the nonsingular 2n x 2n matrix T 

( 2. 3) 

where e~ .. ·fhn are the eigenvalues of P . Putting 

y ( t) "' T l ( t) or y ~ ( t) = T l ~ ~ ~ ( t) ( 2. 4) 

85 

-1 
Eq. (2.2), after multiplication from the left by T 1 

goes over into 

!(t)= D!(t)+ :x.(t) ( 2. 5) 

where x(t)= T- 1 F(t), or x~(t) = Ti.~" FJ.(t) 

The solution of (2.5) corresponding to 

i~ (0) = 0 is given by 
t 

~(t)={H(t--c)x(-r:)d-c l 
H(t) =eDt n· ( Q1 t 1!2."~) r with = ~ag. e , ... e J 

( 2. 6) 
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We have, therefore, 

t 

2t (t) = /e e~(t--c) Xt (,;) d:t ( 2. 7) 

0 

Analysis now continues as in the case 

of one degree of freedom. It is only necessary to 

determine che correlation functions of the x.~(t) from 

those of the f~ (t) or Qi-n(t). One easily finds the 

following equation for correlation and spectral den­

sity of a sum u(t) = x(t) -t- y (t)*): 

(2.8) 

The same is true for the spectral densities. If the 

processes x andy are orthogonal, R:(.y = Ryx = 0 

and Sxy = Syx = 0 

•) For a sum of n variables lL (t) • .!: :x.i(t) the analogous 
1=1 

relation holds 

( 2. 9) 
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3. Continuous Systems . 

B e n d i n g 0 f a B e a m. 

With the aid of the Ritz method a continu­

ous system may always be reduced approximately to one 

with a finite number of degrees of freedom. Choosing 

for the corresponding functions ~n the Ritz series 

the eigenfunctions , kinematic and dynamic boundary 

conditions are automatically satisfied and one can 

be sure to get arbitrarily close to the exact solu­

tion by increasing the number of terms. 

As an example we consider the beam on two 

supports, Fig. 2.1, 

Fig.2.1 

under the action of a 

load q (x,t) , distri!: 

uted randomly with re­

spect to space and time. 

The material of the beam 

is assumed to possess 

internal damping follo~ 

ing the Voigt-Kelvin 

constitutive equation of viscoelasticity. After inte 

gration over the cross-section o£ the beam this law 

may be written as a linear relation between bending 

moment M and rotation ~ of the cross-section [1] 
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M=-EJ(1+c~)~ ut v x 
(3. 1) 

where e is the damping coefficient, of dimension of 

time t . If the Bernoulli-Euler model is used for the 

beam, i.e., if the influence of shearing forces and 

rotatory inertia is neglected, then q>= fJw/ ()x , 

where ur (x.t) represents deflection, and one obtains, 

substituting M from the law of angular momentum 

the following equation of the viscous beam 

( 3. 2) 

The eigenfunctions will be determined 

first. Putting, for the n-th eigenfunction, 

e A font . "1 
'W' 11 : n e !Hn "'n X A. = n 

n'1t 
2 

( 3. 3) 

boundary conditions are satisfied, and one obtains 

from (3.2), with q = 0 J the following frequency equa· 

tion 

t>,.2 2 4 A. 2 4 0 
J"'n + e c An J-'n + c An = ( 3. 4) 
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Separating into real and imaginary parts 

(3. 5) 

one gets 

(3.6) 

Admittances for 

now be determined. Putting 

ur (X., t) and M (X, t) may 

( t) i. c.>t . ~ 
q X, = e Sl.n "'n X , ur~(x.t)= Fn(oo )ei.c.>t si.n 1.. 11 x } 

M~ ('X, t) = Gn( (o) )ei.c.Jt s~n l..n 'X. 

we find, upon substitution into (3.2), 

f ( ) 1 G ( ) 1+i.wf c.2'l2. 
nr.u = eFD(oo)' nw=- D((o)) ·"'n 

(3. 7) 

( 3. 8) 

Now we concentrate on the study of the ran­

dom vibrations. We first expand q ("x,t) in terms of the 
• . *) e1.genfunct1.ons 

011 

q (x,t)::l: qn(t) ~Ln An'X. 
n=1 

( 3. 9) 

•) Compare also [2]. 
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where 

t 

'ln (t) = ~ j q (x.,t) ~~n A11 X d:x. 
0 

For each component ur'll(x.,t),Eq. (I-5.20) holds•). 

Summing 

u.r (x.t) = n~ W'11 (~.t) = ~ s~n A11'X i~ 11 (t--r)qn(-c)d:t 
-<II 

Substitution of (3.10) renders 

+ao ~ 

w(x,t)=: ~ ~Ln A11 X /hn(t--r)jq (~,1:h~n An~ d.!; d.-c 
-ao 0 

(3.10) 

(3.11) 

(3.12) 

For simplicity, we assume that E{q(x,t)}=O. 
Then E { U1 (x., t)} = 0, and we get for the correlation 

function of ur , cf. (I-5.32), 

+<II +<II 

E {w( x~, t). w ('X 2 ,!I)}= : 2 ~ ~1 SLn A11 X 1 s~n 'Amxa// h0 (t--c) hm( ~- p. ). 
- ao -ao 

(3.13) 

•)We restrict our attention to stationary motion! 
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This completes the solution of the problem, 

at least in principle, in the sense of correlation 

theory. The actual evaluation of (3.11) for a given 

correlation ,function E{q(~;t).q(ll,J.l)} will, in gene­

ral, present considerable numerical difficulties. 

The problem is simplified drastically if 

one assumes that the load is not correlated space­

wise, 

(3.14) 

The s~cond of the two double - integrals may then be 

evaluated in closed form. As a consequence of the 

orthogonality of the circular functions it vanishes 

for m * n , and the double sum r~duces to a simple 

sum. Putting, in addition, "C= t-U. 1 }L=!I-1J" 1 we get 

(3.15) 

As was to be expected, the correlation func­

tion of UT depends on "'t but not on t . Accordinv to 
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Eq. (I-5.32), the function R11 ('t) is the time-part of 

the correlation function of w,(x.t). The latter is 

connected with the corresponding spectral density 

5 11 (oo) through Eq. (I-5.17). 

A similar expression may be given for 

the correlation function of the bending moment M (x.t). 

The spec t r a 1 dens it y 511 ( W) i s conn e c t 

ed with the spectral density of the excitation via 

Ect. ( I-5.38). One has, therefore, finally, 

E { ur( X~, tT-c) .w( x 2 ,t 1} = ~ o;,i.n A11X 1 si.n AnX2 Js ( oo) I Fn ( ro) 1
2cos oo-c dw 

- 0 

(3.16) 

where 5 ( cu) is the excitation spectral density, cor­

responding to 'R ( t) . 

An identical expression is obtajned 

for the bending moment, with G 11 (w} replacing Fn (w). 

The integral in (3.16) can only be eval 

uated (in general numerically) if 5(w) is given. The 

evaluation is possible 1n closed form ~n the extreme 

case of white noise excitation. It turns out, however 

that the variance of the bending moment then becomes 

infinite, while the variance of the deflection re­

mains finite. If, on the dther hand, shearing stiff­

ness and rotatory inertia are taken into account 

(Timoshenko beam), both variance of deflection and 

variance of bending moment remain finite [1] . 
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C H A P T E R III 

NON-LINEAR RANDOM VIBRATIONS. 

Exact solutions are, ~n general, not 

available. For finding approximate solutions the same 

methods as in the deterministic case are being used. 

We discuss some exaMples. 

1. Oscillator with Nonlinear Restoring Force. 

Let the corresponding differential equ~ 

tion be given as 

~ + ay + F ( y) = ~ ( t) H ( t) (1. 1) 

Assuming x(t) to represent white noise with zero mean 

we have y(t) a nonstationary Markov process with 

Fokker-Planck equation ( I-9.16) which, in the present. 

case, is identical with (I-9.19), 

() p () ~ ) ] () . () ~p - = -. F(y)+ ay p --(yp)+ D-. at oy ay C1y 2 
( 1. 2) 

for the transition probability p ('f ,y; t l Yo , Y0 i 0) 
The autocorrelation of x(t)is 

( 1. 3) 
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The general solution of equation (1.2) is 

not known, at least not in closed form. However, y(t) 
becomes stationary for t-oo . Putting, ()p/ot= 0 the 

solution of (1.2) is then [1] 

(1. 4) 

where C is a normalizing constant, and 

y 

V(y) =/F(Tt)dTt (1. 5) 
0 

represents the potential of the restoring force F . 

The ex pre s s ion. within the bra c k e t s in E q • 

(1.4) is the sum of kinetic and potential energy per 

unit mass. We note that p(y,y) is Gaussian in y. 
Also, since 

p(y.y)= p(y)p(y) 

y (t) andy (t)are independent. 

For the stationary expectation of y(t)one 

has 

+oo a • +ao 

E{y(t)} =C je-Tii"dy /Y exp{- ~ V(y)} dy 
-oo -ao 
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and, upon integration, 

+oo 

E{y(t)}=C ~2n ~ Jy exp{- ~ V(y)} d.y=my ( 1. 6) 

-oo 

If V(y) is an even function E{y (t )} vanishes. 

Similarly, for the variance 

+00 

o-./·= C ~2:rt ~ j/ exp {- ~ V(y)} dy 
-oo 

2. - m 'I ( 1. 7) 

The preceding analysis may be 

immediately generalized to a system with n. degrees 

of freedom: 

.. . i 
'1 . + o;. Yi.. + -

~ • m. 
~ 

av = 'X.· (t) 
f) y~ . 

(1. 8) 

The stationary Fokker-Planck equation now reads 

( 1. 9) 

where 

< xl(t)>=0 1 <x~(t)xi.(t+-r)>=2D~6(--c),<xi(t)x/t+-r))=0 tor L::l=~ 

has been assumed. Eq. (1.9) has the solution 
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provided 

D~ 
-m· = K 
~· L • 

With the aid of the preceding formulas a 

great number of the problems discussed in Chapter IV 

and related to material fatigue may be solved. 

2. Perturbation Method . 

The method [2] 1s applied exactly as 1n the 

deterministic case. Let the differential equation be 

( 2 . 1) 

and let the nonlinear part ~g (x) be small*). E.. is a 

smallness parameter. We expand the solution in powers 

of E. 

( 2. 2) 

substitute, and equate the coefficients of tn to ze­

ro. We obtain then the following recursive chain of 

linear differential equations 

•) The same assumption has to be made if equivalent 

linearization is used, sec. 3. 
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( 2. 3) 

differentiability of s(x)being assumed: 

Employing Eq. ( I-5.20) we have 

OD 

X 0 ( t ) = j h ( 't ) f ( t - -c ) d ""C ( 2 • 4) 

0 

and 

OD 

x~(t) =- oo~jh(-c)g[ x0(t--c)] d-e ( 2. 5) 

0 

and so on 

where, 1n the present case, the impulse response of 

the system (2.3) is given by 

h(t) = 
&(n {A) 0 ~t 

CJJo~ 
( 2. 6) 

In principle, all moments of arbitrary order may now 

be determined. Integration difficulties soon become, 

however, insurmountable. 

As an example, we discuss the Duffing 
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equation, g. (x) == X3 , and restrict the solution to a 

first-order perturbation: X= X0 + E.X1. The expectation 

of x2 is then, to this order, 

( 2. 7) 

From (2.4), upon squaring and taking expectations, 

OOGD 

<X~>=//h(-c .. )h (-c 2)<f(t-T~ f (t--c2)>dT1 d.T2 (2.8) 
0 0 

1.J e a s sum e f ( 1: ) to b e s t a t i on a r y • Then 

(2.9) 

Furthermore, from (2.5), 

aD 

< x0 x1 >= -ro~jh('t)< x 0 (t) x~(t--c)>d:t 

and, using (2.4), 
00 00 00 00 00 

< 3:0 'X~> =- oo!/ h ( 1: )j h (-c .. )j h (-c2. )j h ( 't~) / h (T4 ) H d't d:ci dT2. d.-c 3 d:t4 
0 0 0 0 0 

(2.10) 

where 

The fivefold integral simplifies somewhat 

for F (t) normal with zero expectation and autocorre­

lation Rf(t). 
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Then 

(2.11) 

and we have 

It ~s expedient to first determine the <-cutocorre1ation 

of X 0 

QO 00 

R0(-t) = < X 0 ( t) X 0 ( t +'t) >=I I h (1:1 J h (1: 2) Rf (-c -1:1+ 't2)d t1 <i "C2 ( 2 • 1 3) 

0 0 

which also renders 

Substituting now (2.12) into (2.10), interchanging 

the order of integration and using (2.13), one obtains 

00 

< X 0 :x.1 > =- 3oo~ 0"~ j h.(-c) Ro(t) d.-c (2 .14) 
0 
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Eq. (2.7) then g~ves 

OD 

<X2 >=0"~ [1-6ew~/h(-r) R0 (-r)ct.-r] (2.15) 

0 

Iff (tj is Gaussian white no~se with Rf(t) = 

= ca (-r) J one finds, after some manipulation, using 

Eq. (2.6), 

We note the reduction of the variance for a "hard" 

spring,c> 0. 

3. Equivalent Linearization . 

The method, [3] and [4], wil·l be demonstra~ 
ed using the oscillator with nonlinear restoring force 

as an example. The corresponding differential equation 

~s 

( 3 . l) 

w i t h f ( t ) a s t a t i on a r y r and om f 11 n c t i o n \v i t h z e r o me an . 

We restrict discussion to the stationary 

solution and replace (3.1) hy the"eC]uivalent" linear 

equation 

( 3. 2) 
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In the deterministic case, the function (error) 

F(x)= )..x- i(x) 

1.s "balanceu"' in the lowest harmonic by introducing 

a p8riudic solution and expanding i(x) in a Fourier 

series. With f (t) and, hence, x(t) random functions 

this is no longer possible. Instead, we require now 

that the variance of the function F(x) be a minimum 

From 

we then obtain 

}.. = E{xg(:x)} 

E {x2} 
(3.3) 

Neither numerator nor determinator are 

known in Eq. (3.3). T0 determine them in first appro~ 

imation the linearized equation (3.2) may be used. We 

have then 

(3.4) 

With spectral density of the driving function f(t) 

given, the integral may be evaluated using the calcu 
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lus of residues. We still need E{xg (x)} . If f(t) 
is normally distributed, then so is x within first 

approximation. With m = 0 and E{x2.}= O"i its probabili­

ty distribution is given by N (o,o-i) , and we have 

+oo 

E { xg (x)} = J xg (x) p (x) d.:x. 
-co 

The more general case, where nonlinearities 

appear also in X 

and where g depends explicitly on t has been treated 

by Caughey [4] . 



www.manaraa.com

104 Chap. IV - Zero Crossings, Peaks, Material Fatigue -

Literature . 

[1] T.K. Caughey: Derivation and application of the 

Fokker-Planck equation. J. Acoust.Soc.America 

35 (1963)' 1683. 

[z] S.H. Crandall: Perturbation techniques for ran 

dom vibration of nonlinear systems. J. Acoust. 

Soc. America 35 (1963), 1700. 

[3] S.H. Crandall (editor): Random Vibrations. Vol.2 

p.97, M.I.T. Press 1963. 

[4] T.K. Caughey: Equivalent linearization tech­

niques. J. Acoust. Soc. America 35 (1963), 

1706. 



www.manaraa.com

Exceedance of a Given Value 105 

C H A P T E R IV 

ZERO CROSSINGS, PEAKS AND MATERIAL FATIGUE. 

To determine the life expectancy of a 

structure or the probability of its failure, the pro-

b . . f d . 1 •) abLlLty or the stress to excee a gLven va ue, as 

well as of the mean frequency of this exceedance, must 

be known. In addition, it will be important to know 

the distribution of subsequent stress peaks. All these 

questions are, in general, difficult to answer, par­

ticularly so for nonlinear structures. 

1. Exceedance of a Given Value. 

x(t) 
1 Consider the stationary 

random function :c.(t) and 

its time-derivative i(t). 
Let the joint probabil! 

ty density of X and :C. 

be p(i; ,1'\), [1]. 
The probability 

that Jt at time t lies 

Fig. 4.1 between ; and ; +d.; 

*)see also Chap. V, section 8. A generalization 1s 

given in [s] . 
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and at the same time, X lies between T\ and 1'\+d'l'\ or, 

in other words, that the strip between ~ and~+ d; 
is being crossed with speed between 11 and 11 + d'fl , 

cf. Fig. 4.1, is given by p(!; 1 1'\)d.; d'll . On the other 

hand, this expression also represents the time inter-
•> val which, during unit time, is being spent by X with 

in the strip d~ while moving with speed 1'\ • Now, the 

duration of a single crossing of the strip is given 

by d.';/ I '11 I , where the absolute sign has to be taken 

since it is immaterial whether the speed 1l is positive 

(going upwards) or negative (going downwards). Dividing 

now the total time being spent within the strip by the 

duration of one crossing we obtain the mean number of 

crossings per unit time, with speed ~ , (crossing fre­

quency) of the line -x. = l; 

The total number of crossings (with arbitrary speed) 

per unit time is, therefore, 

+oo 

"~ = J 11ll P (~ ' ll) d.11 ( 1. 1) 
-oo 

In particular, the number of passages through zero 

•)Indeed, probability 0.1, for instance, means that 

in the course of 1 second, the event is to be expec~ 

ed to last 0.1 second. 



www.manaraa.com

Exceedance of a Given Value 107 

is obtained as 
+00 

'\ o = f I T\ I P Co , 11) ci11 (1. 2) 
-oo 

Since, in the mean, the numbers of upward and down­

ward crossings of the line X=s will be equal, we co~ 

c lude that, in the mean, the frequency for X ( t) to ex 

ceed a given value~ will be n~/2. 

If X and X are independent •), and i is nor­

mal N(O,"C 2), 

( 1. 3) 

it follows from (1.1) that 

( 1. 4) 

If x, too, is normal N (O,o-2), then 

1 
~2 

n~ 
1:" - z crz = e 

'3t (J" 
(1. 5) 

and, in particular, 

no i T 1 ~- R"(O) = - =-
Jt 0" Jt R(O} 

( 1. 6) 

•)Th . ey are certa1nly orthogonal, c£. Eq. (1-5.8). 
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For wide-band noise, Fig. 4.2 

S.,(w) = ( : 
otherwise 

-c.ub -wa Wa wb w 

Fig. 4. 2 

and we have 

a-2= -~ l<(wb-rua) L'2• j_ ~ (w~-cu!) 
1t 'Jt 

Hence, for a normal distribution, 

v 
2 2 

no = i Wa + U>aWb +COb (1.7) 
1t 3 

2. Extreme Values. 

We now ask for the probability distri­

bution of the extreme values and, in particular, of 

the peaks of a stochastic process, cf. Ll] , [2j ard 

[3] , p. 95. 

A peak occurs if x(t)=O and i(t)<O. 

Therefore, the probability for a maximum within the 

in t e r v a 1 s d. t and d ~ i s , s in c e i ( t) ha & to chang e. f rom 

+ to -within that interval, given by 
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x(t) 

t 

Fig. 4.3-

Denoting by p(~,'l'\.~it) 
the joint p. density of ~.x, 

il we have, with ciT\= ~d.t, 

P [Max in d.~ d.t] = 
0 

= fp(~,O,~;t)d~(-~dt)dt= 
-oo 

0 

=-d.~ dt ~~p(i;,O,~;t)d~ 
-OD 

(2.1) 

From this relation, the prob­

ability of a maximum within 

unit time above X= a is 

ClO 0 

P [Max> a per unit time]=-J d'Ej~p(~,O,'~; t)d~ ( 2. 2) 
a -oo 

However, this probability is also equal to the expecE 

ed number Na ( t) of maxima above 'X = a , per unit 

time. Integration over a given period of time renders 

the expected number of max1ma within that period. In 

the stationary case, p (~ ,Tj, ~; t) does not depend 

on t . 

If X (t) is a stationary random process with 

narrow frequency band its realizations have the appeaE 

ance of sine waves with slow, random amplitude - and 
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frequency modulation, Fig. 

I x( t) 

-IT -r-.._,__ ~ ....--" ~, 
. I ·r~ 

/ 

/ 

\ 

~ -
Fig.4.4 

4. 4. In that case, one may 

safely assume that there 

is only one single maxi­

mum or minimum between 

two zero crossings. Of n 0 

crossings only ~a have, 

in the mean, an amplitud~ 

larger than a. Therefore, 

approximately, 

r; . . J na 
PLMax>a per un~t t~me =no ( 2. 3) 

and we have for the probability density of max~ma >a 

d.P 
PM(a)==- da = 1 d.na 

n0 d.a 
( 2. 4) 

We return now to Eq. (2. 2) and assume 

x (t)stationary, ergodic and normal with zero mean. 

Then 

+T 

E {x.i} = o 1 E {i i} = o , E {xx} = ti:m 2\ /xx cit = 

= hm 1 
2T 

-T 

( 2. 5) 
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From Eq. (I-2.35),with zero mean values, one finds 

p(x,y,z)= ~ exp [- 2~ (m 11 x 2 + m22 y2 + m33 22 + 2 m12xy +2 mp,y'l.+ 2m31zx~ 

where 

o-2. 
1 

D = o-11. 

0'13 

2 2 2 
m33 = o-1 cr 2 - {)"12. 

( 2 . 6) 

o- 2.1 = E { """ 2} , ..... E { 'V } o~>o u~2 = .A#'/ etc.. 

With X = ~ ' y = 0 I i! = t and 

goes over into 

P( ~,a,);)= ~ exp [- 2\,, (a-~ cr: ~' + 2 crj ~I;+ cr~ .,-~ ~·~ 
( 2. 7) 
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Differentiating Eq. (2.2), 1.n accordance with Eq.(2.4), 

with respect to a, and substituting Eq. (2.7) one 

obtains, after lengthy manipulations, for the p.-den­

sity of the envelope 

N 

where 

1 

21t 

( 2. 8) 

X 

erf (x) =- _2_ fe -tz d.t 
'[it 

0 

+GD 0 

:: , N = - f ci ~ f ~ p ( ~ , 0 , t) d.~ ( 2. 9) 

-co -ao 

N is the total number of maxima per unit time, in­

dependent of their magnitude. 

It can be shown that «must lie in the 

interval [o, 1] The upper 1 imi t, oe :: 1 , corresponds 

to the case of a narrow frequency band, N= ~ 
2 
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Eq. (2.8) reduces here to a Rayleigh distribution 

(2.10) 

If, on the other hand,« is very small, we have the 

case where the mean number of maxima is much larger 

than that of zero crossings, cf. Fig. 4.3. Eq. (2.8) 

then, in the limit c.c = 0 , goes over into a normal 

distribution: 

(2.11) 

If x(t) is not normal as, for instance, in 

the case of a nonlinear structure, the evaluation of 

Eq. (2.2) not only presents great difficulties but, 

moreover, there exists, in general, no possibility 

at all to determine p (x, :i:, X.; t) even for 

a Markov process. The simple reason for this lies in 

the fact that the differential equation of a mechan-

ical system is of 

the determination of 

order two and, thus, permits 

p (x , x, t) only. In order 

to improve on this situation it has been suggested, 

[1] , to employ a different definition of the concept 

of envelope. Let the restoring force of the system 

have the potential V(x). If one then imagines, at ev­

ery instant, the total energy of the system (per unit 

mass) to be transformed into potential energy, 
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• 2 

~+ V(x)== V(a) 
2 

(2.12) 

one obtains the max1mum possible amplitude a at 

t~at instant. The curve in the x,t-diagram, formed 

by these amplitudes, may also be considered an enve­

lope whose p.-distribution is then given by 

a y a ~ 

P ~ xI :E a] = I dx I p ( x . i) di == 4 j d.x j p ( x J x) di 
-a -Y o 0 

with 

y(:x.,a)= V2[V(a)-V(x)] (2.13) 

Differentiation renders the p.-density of the enve­

lope as 

d.P PM(a)=-
d. a 

a 

= 4 V'(a) j p [x..y (x,a)] 

0 y(x.a) 
dx (2.14) 

We observe that now only knowledge of p(x,i) 1s ne 

cessary for the determination of pM(a.). 

3. Criteria of Fatigue. 

In order to obtain some measure of material 

fatigue in the case of a randomly fluctuating load 
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the Palmgren-Miner law will be assumed to be valid. 

According to this law, damage produced by the i-th 

load cycle is equal to,[l] , 

where eli. is the stress amplitude, and k and « are 

material constants. The damages caused by subs~quent 

load cycles are assumed to superpose linearly. Hence, 

after n cycles damage has increased to 

n 

5 = ~ !li. 
L=1 

Now, if clt is a random variable, S too 

is random, and We find for the expectation of damage 

after n cycles 

G!) 

E { 5 } = I: E { s ~} = n k E {a oc } = n k J a« p M (a ) da ( 3. 1) 

0 

If we refer the process to the time inter­

val ( 0, T] rather than to the number n of load 

cycles, we may write, in the stationary case, 

"o T 
2. 

assuming a narrow frequency band, Fig. 4.4. 

( 3. 2) 
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In order to make the diagrams and tables 

obtained in the usual deterministic fatigue tests of 

materials applicable to random load fluctuations, 

J.W. Miles has suggested, [7] , to introduce an 
+ 

"equivalent" cycle stress, whose frequency is n 0 , 

and whose amplitude is given by 

00 

A a = I act. PM (a.) cia 
0 

(3.3) 

•) 
The total damage is then the same in both cases 

We also mention another mathematical model 

frequently used for the determination of the expected 

lifetime of structural, in particular electronic, 

~omponents (radio tubes, for instance). The model 

is characterized by the two following assumptions, 

see [4],p. 61: 

(a) If the lifetime of the component has 

reached the value t , the probability that it will 

fail 1n the time interval (t 1 t .,. olt] is given by 

pt [failure in the interval cit]= a(t) d.t 

where a(t) is a given function, compensating for the 

increasing wear and, hence, increasing probability of 

failure with increasing service time of the component. 

•) For further details refer to [6] and [s]. 
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(b) The probability of putting a defective 

component into service is zero: 

for t Et 0 

Let F(t) denote the p.-distribution of the 

component 

P[T=!t]= F(t) 

where T represents lifetime. Now 

p [t < T ~ t + d.t J = p [ T E t + dt ) T ') t J p [ T > t J 
Since 

P[t< T Et+cit]= F(t+d.t)- F(t)= F'(t)d.t+ ... 

P[T >t]= 1-F(t) 

and, according to (a), 

P [ T Et t + d.t I T > t J = a ( t) d.t 

we obtain the differential equation 

F' (t) = [1- F (t)] a (t) 
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Integration renders, with initial condition taken into 

consideration, 

t 

F(t)= 1-exp(- [a.(-r)d-c) ( t ;;: 0) ( 3. 4) 
0 

A frequently used express1on for the func­

tion a.(t) 1s 

(3.5) 

Putting o: = 0 one obtains the Weibull-distribution*: 

*For details and additional references see [9 J. 
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C H A P T E R V 

STOCHASTIC STABILITY . 

We turn now to the investigation of differ 

ential equations whose coefficients are random func­

tions C'parametric excitation"). Such equations occur 

frequently in applications: flutter of aircraft wingE 

in turbulent atmosphere, instruments on shaking ground 

or shaking suspensions, wave propagation in inhomoge­

neous media etc. In this connection, the question of 

stability or instability of the motion is of fundamen 

tal importance. 

We first give a simple example. 

1. Pendulum with Randomly Shaken Suspension Point . 

Fig. 5.1 

Let the suspension point of 

an oscillating pendulum move verti­

cally under the action of random 

forces, Fig. 5.1. The law of angu­

lar momentum, referred to the sus­

pension point, then renders 
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where ).. 1s the coefficient of damping. For small 

amplitudes this simplifies to 

'vhe re 

2a = 2. g. 
(a) = o E 

Q:(t)= X.(t) 
e 

(1. 1) 

. 1. •) . . An extens1ve 1terature ex1sts for d1ffer 

ential equation (1.1) and related equations for the 

case where ~(t) is a deterministic, periodic func­

tion. If, however, ~ (t) is random, the corresponding 

motion is random and the question of its stability 

becomes a probabilistic problem. To solve it the con­

cept of stability must first be generalized to random 

functions. 

2. Definition of Stochastic Stability . 

We first recall the deterministic defini­

tion of Lyapunov stability. 

Let X= 0 be the equilibrium or null solu­

tion whose stability properties are being tested. 

~See, for instance, ~] , where a rather complete 

list of references may be found. 
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.., (:x. :X. ,.,. \ .;s assumed to be an n-vectar . 

.A.=~· 2.··· .... n} .._ 

Now let the equilibrium be disturbed and the system 

be moved to an initial state X 0 at time t = t 0 . 

Den o t e the ensuing so 1 u t ion by X. ( t) . The e q u i 1 i b r i u m 

solution is then said to be stable in the sense of 

Lyapunov if, given t > 0 
such that, for all t ~to 

there exists an ~(G,t 0 ) 

II :X. ( t ) II < E 

provided II :x: 0 II < 11 initially. 

the norm 

n 

!I :X. ( t ) II = L I X.~ ( t ) I 
~-1 

( 2 . 1) 

II X (t) II denotes 

( 2 • 2) 

If 11 can be chosen independently of to ' 
the equili.!::_ 

r~um solution xa 0 ~s said to be uniformly stable. 

If X - 0 ~s stable and i f ' ~n addition, 

~~m II x ( t ) II = 0 
t-oo 

(2.3) 

equilibrium ~s said to be asymptotically stable. 

Finally, if (2.3) holds for any :X: 0 , the eqvilibrium 

solution ~s said to be asymptotically stable in the 

l~arge. 

Turning to the concept of stochastic 

stability, we note that !lx (t)!l is now a random 
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variable. Hence, definitions (2.1) and (2.3) must be 

reformulated, which can be done in various ways, 

cf. [2] . Three widely used definitions are listed in 

the following. 

(a) Stability of the Mean.The equilibrium 

solution has mean stability if, given t ~ 0 , there 

exists 'Tj (c, t 0 ) such that, for all t.?:t 0 , 

E {II X ( t ) I~ < c ( 2. 4) 

provided II X 0 II < 11 initially. 

If 

ti.m E {II X ( t) II} = 0 (2.5) 
t--oo 

we have asymptotic stability of the mean. 

(b) Stability of Mean Square. The equilih­

rium solution has mean square stability if, given ~>0, 

there exists 11 (t,t 0 ) such that, for all t ~ t 0 l 

( 2. 6) 

p r o v i d e d II X 0 jj < 11 in i t i a 11 Y • II X ( t ) II m lS defined 

by 

( 2. 7) 
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If 
(2.8) 

the equilibrium solution is said to have asymptotic 

stability of the mean square. 

(c) Almost Sure Asymptotic Stability. The 

equilibrium solution is said to be almost surely as­

ymptotically stable (or asymptotically stable with 

probability one) if, for any t.>O, 

t~m P[llx(t)lj > ~J = 0 
t--ao 

(2.9) 

Stronger stability definitions are obtain­

ed if II X ( t) II i s rep 1 aced by 5 up II X ( t) II • The s t u d y 
t ~to 

of the latter random variable, however, requires·much 

more sophisticated techniques. 

3. Sufficient Conditions for Almost Sure Stability . 

Consider the linear system of differen­

tial equations 

= I: ra ·. + f .. ( t )] x.. 
. ~ ~k ~i "' i 

(~.~::1,2 ... n) ( 3. 1) 

where the f~~ (t) are random processes, stationary 1n 
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the strict sense, and continuous and ergodic with 

probability one. From continuity, existence and uni­

queness with probability one of the solution of (3.1) 

follow in [0 Jao). 

Kozin [3] was the first to give a sufficient 

condition for almost sure stability. For its deriva-

tion we need the Gronwall-Bellman lemma: 

t 

u.(t) E C + ju.(-c)v(-r.) d.-r. 
0 

If 

(a) 

with u.(t) ~ 0, 1r (t) ~ 0 J and C a=O, then, also 

t 

u. ( t ) E C. ex p j v ( -c ) d. 't 

0 

Proof: From (a) 

u.v 
t 

c + 1 U.'IT d-.: 
0 

and, upon integration, 

t 1; 

to~ ( C +I u. '\t d -c) - to~ C E I v d T. 
0 0 

(b) 

where the constant of integration C has been put 

equal to zero which, obviously, represents the stron~ 

est condition. 
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Therefore, 
t 

C + J uvd-c ~ 
0 

127 

Q.E.D. 

We now write the solution of Eq. (3.1) 1.n 

the form 

t 

xi.(t)=yt(t)+~ ~ /Y~t(t--c)FJk(-c)xk('t)d-c 
"" k 0 

( 3. 2) 

where y~ (t) is that solution of the system 

( 3. 3) 

for which initially Yl(O)= x.dO), while Yti(t) repre­

sents the fundamental system of solutions of (3.3) for 

which initially Y~JCO) = 6t!, cf. (II-2.6). Using now the 

norm (2.2) for the vector ~(t)=[x.1(t), ... x.n(t)j, and the 

norm 

II M II = ~ ~ I rn L i I 
c ! 

for the matrix M=(m~t),we obtain from Eq. (3.2) and 

as a consequence of 

II a "~- b II ~ II a II +II b II , II M ;t II ~ II M II · II :x: II 

the inequality 
t 

II X ( t ) II !$ II y ( t ) II + [II y ( t -1:) II· II F ( 1: ) 11·11 'X ( 1: ) II d. T (3. 4) 

0 
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Since we have assumed asymptotic stability (sufficient 

ronditions), we may write 

II Y ( t; II :s a e- ut , II v ( t) II ~ b e- ut o. s) 

with suitably chosen positive a, b and ct. Then, from 

Eq. (3.4), 

-t 

II x(t)ll:se-ut [a~b /ee¥'tll F(-.:)1\·llx(-c)lld-r] 
0 

Applying the Gronwall-Bellman lemma we obtain 

t 

llx(t)ll~ a. exp[-at-tb/IIF(-c)lld-c J 
0 

If the exponent on the right-hand side is written 1r 

the form 

t 

[- a= + b +/II F ( "t) II d 1: J t 
0 

it follows, as a consequence of the ergodicity of 

the ftj (t), i.e., OI 

that the condition 

E {II F ( t) II}< : ( 3. 6) 
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~s sufficient for almost sure stability. 

Condition (3.6) severely restricts the 

class of "stable functions" fLk(t) and is, therefore 

of little practical value. Infante [4] has given a 

considerably improved condition. For its derivation, 

we rewrite Eq. (3.1) in matrix form 

i ( t) = [A + F ( t)] x( t) (3.la) 

and assume, in addition, 

( 3. 7) 

We need the following lemma whose proof may be found 

in the textbooks on matrix theory: 

Lemma. Let B and D be two real, symmetric nxn matri­

ces, with ~ positive definite. Then the matrix lYB-i 

possesses n real eigenvalues At,and 

Consider now the quadratic Lyapunov func-

tion 

V (x) = xr Bx 
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Since B is positive definite, so 1.s \J (x). Different­

iation renders 

and we have, along a solution of (3.la) 

Now we form 

Putting 

l..(t) = V(x.) = 
V( x.) 

xrUA+F)TB + B (A"'F)] x 

xrBx 

the lemma may be employed, and 'A(t)may be bounded 

from below and above as 

According to Lyapunov's theory, the motion (3.la) is 

asymptotically stable for V negative. Hence, in the 

present case, 

t t 

V = V [do)] exp j"A(-r:)d:r: = V [-x.(O)] exp [~ jA.(-c)d't Jt 
0 0 

must be bounded and approach zero with probability 

one for t--- oo. Again, the ergodic theorem renders 

E {t-.(t)} < o 
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and this leads to the theorem of Infante: 

Theorem: If, for a positive definite matrix B and 

some c > 0 

where Amax ~s the largest eigenvalue of the matrix 

( 3. 8) 

the system (3.la) ~s almost surely asymptotically 

stable in the large. 

The theorem gives no clue as to the con­

struction of the optimal matrix B . Furthermore, 

s ~ n c e t h e m a t r i x ( 3 . 8 ) c o n t a i n s t h e m a t r i x t ( t ) = ( fi k ( t ) ) 

which is only statistically known, the theorem is dif­

ficult to apply. Infante has, therefore, given two cor 

ollaries which are easier to handle but place more 

severe restrictions on the functions fl~(t) . We list 

the second without proof: 

Corol_lary. i f the !~1. at r i x F ( t ) in E q . ( 3 . 1 a ) 1 s w r i t-

ten ~n the form 

F(t)= i: tp~(t)C(L) 
•=1 

or (3. 9) 

And if, with a positiv0 ~efinite ~a-
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trix B and some E. > 0 1 

(3.10) 

then (3.la) is almost surely asymptotically stable 
(') in the large. The p t are the eigenvalues of the 

matrix 

and vmu is the largest eigenvalue of the matrix 

We note that, now, only the eigenvalues of 

known matrices have to be calculated. 

As an example, consider the equation of 

the linear oscillator with parametric excitation 

X + 2 t; i + [1 + f ( t) J X = 0 (3.11) 

Putting we have 

A= ( 0 
-1 

C=(o 
-1 :) (3.12) 

We first apply Kozin's theorem. From the 

general solution of (3.11), with f (t) = 0, one has 
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at once for the bounds in (3.5) 

a= ~ , b = 4 

Since 

II F( t) II = I f c t) I 
Eq. (3.6) renders 

(3.13) 

Now we use Infante's theorem and choose for 

the matrix B the most general quadratic, positive de­

finite form 

(3.14) 

with cx 1 and a 2 as yet undetermired. They will be 

used later to make B optimal. 

First we have 

and, therefore, for the matrix B (A+ F) B -1 
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/- «1 ( 1+ f)-«~( cx-1 -l ~) - « 1«l ext( 1 +F) +(ex~ +a2) [cx1(a1- 2 ~)+ex~ 

~. \ -(1•1)-u,(u,-2~) "'• (1•fl•(u,-2~) («~•«a) 
The largest eigenvalue of the matrix (3.8) follows as 

(3.15) 

Putting f • 0 we obtain V max . Finally 

whence 

The theorem then renders 

and the corollary gives 

..(;-. E {I f(t lfr <2 ~ - v4 (~-a,)'+ !, [ .. , ... : -h 2 "'• (~-ex, l]' 
We now choose 0:-1 and a 2 such as to make 
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E {I f(t)l}=max. First, from 

() 

()(X 1 
E{.}=o 

ot 1 =; follows. Upon substitution o: 2 follows by 

inspection, and one finds 

~f 

and, hence, from the theorem, 

E {I f( t) I} < 2 ~ V 1 - ~ 2 J 

(3.16) 

E {I f ( t ) + 1 - 2 ~ 2. ~ < 2 ~ 2. , 

while, from the corollary, 

(3.17) 

One notes that, for ~ ~ 1/ '{i , the same bounds are 

rendered by theorem and corollary, while, for strong 

damping, ~ > 1/'{i , the conditions of the theorem 

are considerably weaker. In addition, a comparison 

with (3.13) shows that the bound obtained from Kozin's 

theorem is much lower and, in fact, practically use­

less. This becomes particularly obvious if one trans-
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forms f rom E { I f ( t) I} to E { f 2 ( t)} w i t h the aid of 

the Schwarz inequality 

4. Stability of the l\1.ean m the Presence of White Noise. 

Frequently, one is satisfied with investi­

gating stability of the mean or, eventually, mean 

square. The investigation of the stability of higher 

moments l~ads, in general, already to considerable 

computational difficulties. 

In addition to restricting ourselves to 

linear systems we assume the coefficients to be white 

no~se. It is not difficult to develop a theory valid 

for a system of n differential equations [s] How­

ever, here we consider only one equation: 

where a and 

istic excitation, 

( 4 . 1) 

are constants, f(t) ~sa determin 

and a 0 (t), cx 1 (t) and «z(t) are 

stationary, normal, white random processes with 

where 1) .. = ]) i.L q· a 



www.manaraa.com

White Noise, Stability of the Mean 137 

The Fokker-Planck equation (I-9.20), cor­

responding to (4.1), is 

( 4. 3) 

- 2 ( D:w y + D21 y) + b 22] p} = 0 

For the expectation of a function F(y,y), 

+ ao +ao 

< F ( '1 '~) > = //F ( y, ~) p ( y I~ j t) d.y dy ( 4. 4) 
-ao -oo 

one obtains, upon multiplying (4.3) by F, and inte­

grating, 
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+oo • ~oo r r eF o(yp) d. "' r r vF ap • 
+ 2 D21 j j ij7 ~ dy 'I+ 2u22} j Cly ()y dy dy 

-ao Y -ao 

Here, integration by parts has been used. The inte­

grated parts vanish (they have been written out ex­

plicitly only for the first three terms), and one ob 

tains, after a second integration by parts, 

d<F> · vF rif(t\ D l VF ( 2 D ) SF -- .. < 'I - > + L.! ) - 21j < -. > - cu 0 - 10 < y -. > -
d.t oy ay vy 

( D \ • f)F > D z a2F 2 D v. ()zF > ..... -,a- 11J<Y()y + oo<'J Clyz>+ 10< 1~ ()y2 ' 

(4.5) 
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Putting now F =- Y and F = y , one gets, respectively, 

d.<Y> _ __.___ = < . y :> 
dt 

Elimination of < y > leads to the following differ­

ential equation for the mean < y '> : 

(4.6) 

Stability of this deterministic equation 

may now be discussed in the usual manner, using, for 

instance, the Routh-Hurwitz criteria. 

5. Stability of Mean Square 1n the Presence of White Noise. 

For the sake of simplicity, we restrict 

ours e 1 v e s to the case «l t) = ex 2 ( t ) = 0 in E q . ( 4 . 1 ) . 
. •) Only the coefficient of y ~s then random and Eq. 

(4.5) reduces to 

d.cF> . {)F 2 ilF . ilF D 2v2F f(t) i>F -=<y-->-w <y->-a.<y->+ o <y ->+ <-> d.t fJy 0 {)y ()y 0 ()y2 ()y 

( 5. 1) 

~The two Fokker-Planck equations (I -9.16) and 

(1 -9.20) become identical in this case! 
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By suitable choices of F )ne obtains 

d.<y> 
--= 

d.t 
< 'J> , d<Y> =-w~<y>-a<y> +f(t) 

dt 

d.<y~ 2 . _d_t.:,.._ = < y 'i > 1 

( 5. 2) 

( 5. 3) 

One observes that, for f (t) = 0 , the equations 

for the various moments are decoupled: (5.2) contains 

only the moments of order one, while (5.3) contains on 

ly the second-order moments.If f(t)¥: 0, Eq. (5.3) 

contains, in addition, the preceding first-order mo­

ments, but no higher ones. This is no longer so if the 

coefficient tX 0(t) is not white noise but is obtained 

from white noise by linear filtering, i.e., for in­

stance, by 

(xo + floc 0 = '{ \11 ( t) 

The equations for the moments are then coupled, ~], 

i.e., those of order two contain the moments of order 

two and three which, in turn, depend on those of or-

•) . 1 f . 
der four, etc .. Obv~ous y, there ore, ~t does not 

•) cf. section 6. 
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longer seem to be justified to speak then of stabili­

ty of mean square. 

As an example we consider the pendulum 

discussed in sec. 1. Let 

< ~(t)>=O , < cx(t)·cx(s)>= 2 na(t-5) 

From Eqs. (5.2) one finds a.> 0 as necessary and suf­

ficient condition for asymptotic stability of the mean, 

i.e., for 

ti.m < e > = eLm < @ > z 0 
t-.oo t--oo 

The condition is independent of the stochastic exc~­

tation, and is satisfied only if the motion is damped. 

Eqs. (5.3) represent three homogeneous 

equations for the three second-order moments < 0 2 > 

<60> and <El 2 > . Therefore, for asymptotic stabili­

ty of the mean square, the eigenvalues of the coeffi­

cient matrix must all have negative real parts. This 

is the case if and only if 

a > o and 

Damping ~s, therefore, necessary whose rn~n~mum value 

is determined by the Sfrcond condition, depending on 

the intensity of the motion of the suspension point. 
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6. Linear Stochastic Equations with Non-White Parameters. 

We consider a stochastic equation of the 

form 

Lu,(t)= ~(t) (6.1) 

where ~(t) is a g~ven deterministic function, and L 

denotes a stochastic operator, linear ~n 'U. and its 

derivatives. We assume L to depend on a random para­

meter z(t), with probability density p(l). Hence,u.(t) 

is a random function. 

We shall attempt to obtain differential 

equations for the various moments of u , in particu­

lar for the expectation < u. > . In doing so we will 

note, however, that the equation for the moment of 

one particular order will always contain moments of 

higher order too. One is, therefore, facing an infinite 

system of equations, known as "hierarchy equations". 

We restrict the operator L to the follow 

ing special form 

[ L 0 + ~ ( t )] u. ( t ) = 'l ( t ) ( 6. 2) 

where L0 is a deterministic linear operator, and 2(t) 
is a random function. For 2 (t) white noise we have 
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then Eq. (4.1), with !X 1 = a 2 = 0 . Taking expecta­

tion on both sides of Eq. (6.2) we get 

L 0 < u. >+ < .z(t) u. (t)> = ~(t) ( 6. 3) 

Since this equation contains c::.z(t)u.(t)> as addition 

al unknown one would, perhaps, be inclined to multiply 

(6.2) by 2 (t) and average. This, however, would lead 

to c:: 2 L0 u. > , and not to l 0 <z U.>. We multiply, 

therefore, by 2(~), rather than 2 (t) , and obtain, 

with 2 ( 5) L0 2 ( t) = Lo z ( s) l ( t) , 

L0 < z(&) u.(t) > + < a(s).z(t)u.(t)> = < z(s)>g(t) ( 6. 4) 

After < l(5) u.(t) > has been determined from this 

equation, we could put 5 = t and substitute into (6.3) 

to obtain an equation for< u. > . We note, however, 

that ( 6 . 4) contains a new unknown < l ( 5) l ( t) U. ( t ) > 

Therefore, we need an additional equation which in turn 

however, contains new moments, and so on ad infinitum. 

One possibility to overcome this difficul 

ty consists in the introduction of a moment-generating 

functional F {x., y} , see [8] , 

F{x,y}=<expj[x(w)u.(w)+y(oo)i(w)]d.w > = 

+ao+oo 

=//[exp j(x(w)u.(w)+y(w)l(w)) dw J p(u.,zit)dudz 

( 6. 5) 

-CJl-00 
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h f . 1 d . . •) w ose unct1ona er1vat1ves 

render, for X ='I = 0 , the moments 

As a consequence of 

= < g(t) exp [JC xu-.. ~l) d(A)J > = g(t) < exp j(xu.t- 'jl) d,c.u > 

one obtains for F the following functional differen 

tial equation 

•) The Frechet differential 8 F of a functional 

F{x(t)} is defined as 

oF= _Q_F{x(t)+t~(t)}l =/ <>~t) ~(t) cit 
e>t t=o a~ 

whence the functional derivative &fjlix(t)may be found. 
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(6.6) 

Little is known about the solution of this equation~ 

A second possibility consists in expres~ 

ing the moments of higher order in terms of the pre­

ceding lower-order moments by introducing certain, 

more or less arbitrary, assumptions. In this manner 

one obtains a closed, finite system of differential 

equations. 

. f . ••) (t) Assum1ng, or 1nstance, 2 and u.(t) 
to be approximately independent, one has 

< z(t)u(t)>=< 2(t)>< u.(t)> (6. 7) 

Eq. (6.3) then contains only the single unknown < U.> 

and reduces, if < Z (t) > = 0 to 

L0 <u.>=g.(t) ( 6. 8) 

A comparison with (4.6) shows, that the assumption 1s 

exact for white noise coefficients. Keller ~] has 

proved that it is generally admissible, provided the 

11!) See, for instance, [1o] , Chapter 3. 

••)See also [9]. 
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stochastic part of the operator l ~s sufficiently 

small. To show this, we consider the general equation 

(6.1) with 

(6.9) 

where £ is a small parameter, L 0 represents a de­

terministic operator, and L1 , l2. are stochastic 

operators. 

Let ~ 0 denote a particular solution of the 

deterministic part of Eq. (6.1) 

Lo U.o = ~ ( 6. 10) 

Putting, then, 

(6.11) 

substituting into Eq. (6.1), using (6.9) and equating 

to zero the coefficients of t and ea , one obtains 

Multiplication from the left with the inverse opera-

L -01 tor renders 

Hence, the solution of (6.1) is, if terms in t 2 are 
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included, 

u. = Uo- tL-d L1lLo +e2 l-o~(L1L"6 L1- Lz)Uo+ o(t"3) 
Averaging gives for the desired expectation 

(6.12) 

<u> = lA.o-t[~< L~> Uo+l.2.ro~ [<l1 r~L1> -<L2>] Uo+ O(t"3) 
(6.13) 

For a comparison with (6.3) we eliminate u 
0 

= < u > + t L -d < L 1 > < u. > + 0 (c. 2.) 

and substitute into (6.13) 

+a (e) (6.14) 

We have now a differential equation for <U>, which 

contains u only in additive form. A different form 
0 

is obtained by multiplying (6.14) by L 
0 

(n.l5) 

Frequently, <L 1>=0. Eq. (6.15) then simplifies to 

(r.lfi) 
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Within the order 0(£)we have, therefore, exactly 

L0 <LL>=g. (6.17) 

which is identical with Eq. (6.8), obtained above 

~ith the aid of more or less arbitrary assumptions. 

Eq. (6.8) may be improved by closing the 

~ierarchy equations at higher moments rather than 

after the first step. This will be shown for the se­

cond step ~1] . Consider the equation of linear 

oscillations with parametric excitation 

(6.18) 

Averaging renders 

(6.19) 

Ins tea d of making the crude as sump t ion < 2 y > = < 2 > < y >, 

we multiply by 2 (5) as above, and average 

( d2 -t-1)< l(S)y(t)>+<2(~)2(th(t)>=0 
dt2 

(6.20) 

In this manner we could continue. However, if we wish 

to stop with (6.20), we close the system by neglecting 

the dependence between z(~) Z (t) and y(t), and put 

< 2(s) i!(t)y(t)> = <z(s) z(t)><)'(t) > 
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We have now a closed system of two equations 

(£ + 1) < y ( t ) > + < l ( t) y ( t) > = 0 
cit;?. 

( ol2. +1)< z(~)y(t)>+<Z(~)z(t)><y(t)>=O d.e 

(6.21) 

From the second equation we find, using the impulse 

response of the system, 

t 

< z(~)y(t)> =- /s~n(t-T.)< l(S).i!('t)><y(1:)>d1: 
0 

where < z (5) l (1:)> = Ri!(s -1:) for stationary l (t) 
Letting now 5=t , and substituting into the first 

of Eqs. (6.21), we obtain the following integro-diffe! 

ential equation for the mean <y(t}>: 

(6.22) 

At the present time, the solution of this equation 1s 

only known for certain limiting cases. For instance, 

if one assumes z(t)to represent wide-band noise, then 

its correlation time is very short, and R2 (1:)decreases 

rapidly with increasing ~ . Therefore, 

I R 0 I >> I R 1 I >> I R 21 » (6.23) 
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where 

00 

R n = I~/ R i! ( 5 ) d.~ (6.24) 

0 

The right-hand side of Eq. (6.22) may now be expanded 

1n a power series in terms of .5 = t-T, 

t t 

f'-n s Rz(S) < y(t-s) > ch= /[s- ~'3 + ..• ] Ri!(s) [<~(t)>-s ~ <y(t)>+ .. ]ds .. 
0 0 

d.< y(t)> 
=R 1 <y(t)>-R, + •.. 

d.t 

and one obtains for <y(t)> the differential equation 

:t: <y(t)> +R, ~ < y(t)>+(1-R 1 )< y(t)> = 0 (6.25) 

It can be seen immediately that stability of the mean 

1.s determined by the sign of R2.. For R2.~ 0 we have 

stability, for R2 >0we have asymptotic stability while, 

for 'R 2 <0, we have instability of the mean. 

If z (t) goes over into whice noise,then 

R~(s)= o (s) , and R1 = R2 = ... = 0. We then obtain 

the form of Eq. (4.6). 
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7. Linear Differential Equations with Constant Random 

Coefficients . 

The problem of stability simplifies 

derably if the coefficients F .. 
~ k in the linear 

ferential equations are random constants rather 

consi 

dif-

than 

random functions. In order to obtain conditions for 

almost sure asymptotic stability, one first computes 

the Hurwitz determinants, in particular the determi­

nant of order n -1 , known as Routh discriminant. 

These determinants are functions of the random coef­

ficients. Therefore, the probability of asymptotic 

stability (all determinants positive) can be deter­

mined. For almost sure asymptotic stability this 

probability must be equal to one. 

As an example, consider the following sy~ 

tern of differential equations describing the motion 

of an airplane with automatic pilot, [12] : 

. 
'Jl=«1p (7. 1) 

"" = 'P + f.»~ - 'll a 

All coefficients, with the exception of M , are de­

terministic positive constants. M is random with 

x~-probability distribution (cf. Table II of the 
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Appendix), with 4 degrees of freedom: 

{ 1 ->/2 for X. 0!1 0 -xe 
P "(x) = ~ 

for X E 0 

(7. 2) 

are all positive, 

a necessary and sufficient condition for asymptotic 

stability of the system (7 .1) is R > 0 , where R is 

the Routh discriminant, 

Since a , a fJ J k , N ' 

( M + ..!!. ) ( k + M ..!!. + Na ~) - Na - k ~ > 0 
a a • 

With the abbreviations 

.i (~ + k ..!. + Naft\ =A 2 a « / , (7. 3) 

the condition may be written as 

( M +A ) 2 > B (7. 4) 

The probability that this condition ~s 

satisfied, is given by 

QD 

p ~M + A)2 > B J = fo,(M+Al (Y) d.y 
B 

The roots of y = (M+A) 2 are 

(7. 5) 

Hence, from Eq. (I- 2.42), taking (7.2) into cons~-
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deration, 

( 7. 6) 

Eq. (7. 5) then renders 

( 7. 7) 

where 

c = B I i.f 

tf 

We have P< 1 in the first case, while in the second 

case, P = 1. Therefore, the latter case corresponds to 

almost sure asymptotic stability. 

8. The Problem of First Passage . 

In the preceding discussions of stability 

we have required for a system to be stable that its 

motion, as caused by a short initial disturbance, 

remain bounded for all timet> 0. This condition 1s, 
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under circumstances, too strong for practical applic2 

tions. Frequently,it suffices to have the system 

remain within a prescribed region of motion or ampl! 

tude for a finite time only or, in other words, to 

have the rate of increase of the amplitudes sufficien! 

ly low. This consideration leads to the problem of 

reaching a prescribed boundary, or of passing through 

it for the first time. 

Let the behavior of the system be descr! 

bed, exactly or approximately, by a finite number of 

generalized coordinates q1 (t) 1 q2(t) ... qn(t). In the 

phase space spanned by the 2n coordinates q1(t) ... qn(t), 

q1 (t) ... qn(t), a position of equilibrium corresponds to 

a fixed point, while, for a moving system, the image 

point describes a curve. 

Now, let a region R in the phase space, 

called "admissible region of motion", be bounded by 

the hypersurface S , Fig. 5.2. As long as the image 

point of the system moves within this region we call 

its behavior stable. Once it leaves the region we 

consider this to be equivalent to failure. 

Fig. 5.2 

We denote by U(tlxjO) 

the probability that the 

1mage point, after havin~ 

started in :x:=(q-t···'ctn,Ch···qn) 
at time t = 0 , does not 

leave the admissible region 

R within time t U is 
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thus a measure of the reliability of the system. 

The probability 

H(tlx;O)= 1- U(tlx.;O) (8.1) 

represents the probability of first passage, i.e., 

the probability for the image point to pass through 

boundary S for the first time within the time-inter­

val [0 1 t] , after having started at 'X at time t=O. 

Let h ( Xs i t I 'X i 0 ) denote the probabl 

lity density corresponding to (8.1), where Xs are the 

phase coordinates of a point on the hypersurface S . 
The quantity h (x 5 j t I X.; 0) ci5 d.t then represents 

the probability for the first appearance of the image 

point on the surface element d5 with outward velocity, 

within the time-interval (t 1 t + dt] . Therefore 

t 

H ( t I X; 0) = I d. 't p h ( Xs i 't I x 10) dS 
0 5 

( 8. 2) 

Now, if p(x;t I Xo i o) denotes the transi­

tion probability of the process x(t) , assumed to be 

Markov, one easily finds for h (x5 j "t I X; 0) the 

following integral equation, cf. Fig.S.2, 

t 

p ( Y; t I X ; 0) =I d. 't p h (xs ; 't I X; 0) p ( V; t I X5 ; 1:) dS} 
0 s (8.3) 

X £ R 1 Xs E 5 1 y ' A 
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which corresponds to the Chapman - Kolmogorov equa­

tion (I- 9.4). Also, an equation may be set up for 

U ,[13], as the analogue of the Fokker- Planck equ~ 

tion (I- 9.16) of the process x(t), 

(8.4) 

It differs from (I - 9.16) in that the right-hand 

side is to be replaced by its adjoint expression. If 

the "physical" Fokker-Planck equation is used the 

corresponding changes have to be made in (8.4). For 

initial condition one has 

hm U ( t I x ; 0) = 1 (8.5) 
t-o 

u.r · 0r '1oundary condition 

ti.m u (t I X j o) = 0 
x--xs 

For 
2n • 

!: x ~ n~ > 0 
L=1 

(8.6) 

since a cn1ssing of the boundary surface 5 can only 

occur if the image point has a velocity component 

in the direction of the positive surface normal n , 

cf. Fig. 5.2. 

A solution to problems (8.4) - (8.6) 1s 

not known at the present time. A numerical solution 

of the integral equation (8.3) for a special case was 

given by Parkus and Zeman [14] . 
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From (8.4) a differential equation may be 

obtained for the expectation T s < t > of first passage 

time. Putting 

( 8. 7) 

we note that the same differential equation (8.4) is 

valid for both U and J., and we have 

00 

T = It .J" ( t I X ; 0) d.t ( 8. 8) 
0 

Replacing, therefore, U in Eq. (8.4) by ,J- , multi­

plying by t , and integrating, one obtains, taking 

the relation 

00 

/ t aJ. a.t 
ot 

0 

00 

= -! J-dt =- 1 
0 

into consideration, the following differential equa­

tion for T 

( 8. 9) 

with T= 0 on the boundary S . Eq. (8.9) ~s known as 

the Pontryagin differential equation, ~5] . Approxi 

mate solutions of this equation, obtained with the 

aid of the Galerkin method, are given by Bolotin, [1s]. 
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Approximation formulas for ~ , for special 

cases, have been given 1n the literature. Let n~ (t) 

denote the mean number of passages per unit time, with 

positive velocity, through X=a, cf. Eq. (IV-1.1), 

00 

n:(t)= j'flp(a.,'Jl;tl x,ij 0) d11 (8.10) 

0 

Then, approximately, ~6] 

t 

,t (a ) t I x , -i: ; 0 ) = n : ( t ) ex p [-Jn : ('t ) d "t J ( 8 • 1 1 ) 

0 

If the process x(t)has already become stationary, 

n~ (t) = n~ =canst, and Eq. (8.11) goes over into 

J-(aitlx,x;O) 
+ _ + -na t 

- na e (8.12) 

This is known as the exponential distribution, cf. 

Table II of the Appendix. 
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C H A P T E R VI 

SYSTEM OPTIMIZATION . 

In this chapter we consider a linear, open 

loop, deterministic transfer system, Fig. 6.1. 

v(t) 

u.( t) + x(t) h(t) 
y(t) 

+ 

- t(t ) 
+ 

~(t) 
i ( t) 

F1g. 6.1 

The ideal system 9(t)transforms the undisturbed random 

test signal u. (t) into l (t) . The actual system h (t), 

to be optimized, transforms the distorted signal x(t)= 

= U. (t) + '\T (t), where 'IT (t) is random noise, into)'(t). 

We wish to have y(t)"as close as possjble" to ~ (t) by 

minimizing the mean square error (dispersion D): 

Since we want to eliminate the perturbation 

no1se 'U'(t)from ~(t) we speak of filtering or smoothing._ 

If i(t)= u(t+'t) ,wehavethecaseof 

extrapolation or prediction where the future values 
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of u (t) are to be predicted from those of the past. 

If 

l (t) = 

we have the case of differentiation. 

1. The Wiener- Hop£ Equation . 

We as sum e the random pro c e s s e s Ll ( t) and 1!( t) 

to be stationary with zero mean and known autocorrela 

tion and crosscorrelation. Furthermore, we assume that 

x(t)has been observed through an unlimited period 

(- oo , t J preceding, and up to, time t . 

Using the impulse response h(t)of the sy~ 

tern we have for the dispersion, see (I- 5.20), 

D = < [/~ (1:) :x: (t- 1:) d1: - l (t)] 2> 
0 

( 1. 1) 

or, upon squaring, 

00 QCI 

D = jh(s) [/h('t:) Rxx(s-'t)d:t -2Rn:(~)Jd.s +"Rtz(O) 
0 0 

(1. 2 ') 

h(t)has to be determined such as to make b a m~n1mum. 

To s o 1 v e t h i s v a r i a t i o n a 1 p r n h 1 em r,T P r e p 1 a c e h ( t ) b y 
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the expression 

h (t) + a '11 (t) 

and require 

whence 

~~(5)[/~('t) HxxCs- 't) d.'t - Rzx(s)J cicz, = 0 
0 0 

From the fundamental lemma of the calculus of varia­

tions we get 

00 

jh(-r.) Rx:.r.Ct-,;) d't-R:i!x(t) = 0 
0 

(1. 3) 

for tat 0 , corresponi!ing to the interval of integra-

tion of ~ 

Eq. (1.3) is known as the Wiener-Hopf in-­

tegral equation for the optimal impulse response h(t). 

Due to the fact that it is valid for nonnegative t 
only, its solution is not straightforward. 

If (1.3) is substituted into (1.2) one ob­

tains for the minimum dispersion 

CIO 

Dm~n = Rii! (0)- jh(s) Rzx(s) d.s (1. 4) 
0 
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2. Solution of the Wiener-Hopf Equation . 

We first transform to spectral densities 

using Eqs. (I- 5.17) ,and introduce the frequency 

response 
"" 

F (oo) = I h (-c) e -~oo't' d.'t 
0 

Eq. (1. 3) then goes over into 

+00 

/[F(oo) 5:n.(w) -S 2x.(oo)J ei.(.l)t d.ro = 0 for t ~ 0 ( 2 . 1) 

-oo 

To solve this integral equation for the 

optimal frequency response F (ro) we employ the 

following results from complex function theory: 

Let <P+(l;) be a function without poles 1.n 

the upper half complex plane 11 ~ 0, where ~ = ~ +i.-q 1 

and let ~- (~) be a function without poles in the 

lo,ver half plane 'Tl ~ 0. Then 

+oo 

fip -c ~ ) e L ~ t cl. ~ = 0 ~f t < 0 
-ao 

+00 
( 2 . 2) 

J<lt(;) e ~ ~t d; = 0 Lf t ;!: 0 
-oo 
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The proof may easily be given using the calculus of 

residues and closing the integration path by semi-

c i r c l e s , w i t h R - oo , i n t h e l o ~7 e r and up p e r h a 1 f -

planes, respectively. A condition on l.S 

appropriate behavior for I ~~-oo. Since it will be 

assumed in the following that t (t) can be represented 

as a Fourier integral, 

+00 

( 2. 3) 
-ao 

will be valid, and the condition will be satisfied. 

The second of Eqs. (2.2) is identical with 

Eq. (2.1). Hence, the function 

(2.4) 

must not have any poles 1.n the upper half-plane. 

We assume the optimal system to be stable. 

Therefore, its transfer function Y(s), 

Q() 

Y(s) = Jh (t) e-~td.t 
0 

cannot have poles with positive real parts of 5 . But, 

s1.nce F(w) = Y (~w) , it follows that f(w) cannot have 

poles with negative imaginary parts of ro, "F(co) = f-(w). 

Eq. (2.4) may now be written as 

( 2. 5) 
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Spectral density Sxx(;-) will, ~n general, 

have poles both in the upper and lower half-plane. 

In nany instances, however, it is possible to repre-

sent 5 XX as the product of a function s+ (f;) and 

a function 5-(~), without poles in the upper and 

lower half-plane, respectively: 

( 2. 6) 

This can be done in a particularly simple ~anner, if 

S . 1 •) xx is the quotient of two polynom~a s . 

Eq. (2.5) may now be written as 

( 2. 7) 

We have thus resolved the function Sn.(~) I s+(i;) ~n-
to two parts, the first representing the value, along 

the real axis, of a function analytic in the upper half 

plane, and the second representing the value, along the 

real axis, of a function analytic in the lower half 

plane. Now, such a resolution may, however, also be ob­

tained with the aid of the Fourier transform. Indeed, 

for a function ~(~)satisfying (2.3), 

•)For a more general case, see [2], p.l36. 
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whence at once 

oo +oo 

<I>-(~}= 2~ Je-L\td.t J ~(oo) e~c.>tdoo 
0+ -oo (2.8) 

0- +OO 

.P\~') = 2~ je-~~tcLt J <I> (oo) e~"'t doo 
-oo -ao 

For a proof it suffices to substitute Eqs. (2.8) into 

(2.2), and to use the delta function representation 

Upon replacing now the right-hand side of 

Eq. (2.7) by its Fourier transform, and equating the 

-parts on both sides one obtains 

oo +oo 

F(w) = '~... Je-~wtf 5n(«) e~actd«dt 
21t S (oo) S\«) 

(2.9) 

0+ -ao 

This equation determines the optimal frequency re-

sponse. 
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